98%
921
2 minutes
20
Electrochemical scanning probe microscopies have become valuable experimental tools, owing to their capability of capturing topographic features in addition to mapping the electrochemical activity of nanoscale oxygen reduction catalysts. However, most scanning probe techniques lack the ability to correlate topographic features with the electrochemical oxygen reduction and peroxide formation in real time. In this report, we show that it is indeed possible to construct high-resolution catalytic current maps at an electrified solid-liquid interface by placing a specially made Au-coated SiO Pt atomic force microscopy and scanning electrochemical microscopy (AFM-SECM) dual electrode tip approximately 4-8 nm above the reaction center. The catalytic current measured every 16 nm and high collection efficiency (≈90 %) of the reverse current of peroxide byproducts was also demonstrated with the help of the dual electrode tip. Simultaneous oxygen reduction and intermediate peroxide oxidation current mapping was demonstrated using this Au-coated SiO Pt probe on two model surfaces, namely highly oriented pyrolytic graphite and Pt nanoparticles (NPs) supported on a glassy carbon surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201900656 | DOI Listing |
Cell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.
View Article and Find Full Text PDFVet Anaesth Analg
July 2025
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Objective: To determine the use of Air-Test in ventilated, anaesthetized dogs for evaluating oxygen uptake and to determine its potential utility in guiding the decision to perform an alveolar recruitment manoeuvre (ARM).
Study Design: Retrospective cohort study.
Animals: A total of 25 client-owned dogs undergoing general anaesthesia.
Immunol Lett
September 2025
Department of Clinical and Translational Science, College of Graduate Health Science, University of Tennessee Health Science Center, Memphis, Tennessee. Electronic address:
Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.
View Article and Find Full Text PDF