98%
921
2 minutes
20
Climate change is increasingly exposing populations to rare and novel environmental conditions. Theory suggests that extreme conditions will expose cryptic phenotypes, with a concomitant increase in trait variation. Although some empirical support for this exists, it is also well established that physiological mechanisms (e.g. heat shock protein expression) change when organisms are exposed to constant versus fluctuating temperatures. To determine the effect of common, rare and novel temperatures on the release of hidden variation, we exposed fathead minnows, Pimephales promelas, to five fluctuating and four constant temperature regimes (constant treatments: 23.5, 25, 28.5 and 31°C; all fluctuating treatments shared a minimum temperature of 22°C at 00.00 and a maximum of 25, 28, 31, 34 or 37°C at 12.00). We measured each individual's length weekly over 60 days, critical thermal maximum (CT), five morphometric traits (eye anterior-posterior distance, pelvic fin length, pectoral fin length, pelvic fin ray count and pectoral fin ray count) and fluctuating asymmetry (FA, absolute difference between left and right morphometric measurements; FA is typically associated with stress). Length-at-age in both constant and fluctuating conditions decreased with temperature, and this trait's variance decreased with temperature under fluctuating conditions but increased and then decreased in constant temperatures. CT in both treatments increased with increasing water temperature, while its variance decreased in warmer waters. No consistent pattern in mean or variance was found across morphometric traits or FA. Our results suggest that, for fathead minnows, variance can decrease in important traits (e.g. length-at-age and CT) as the environment becomes more stressful, so it may be difficult to establish comprehensive rules for the effects of rarer or stressful environments on trait variation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365863 | PMC |
http://dx.doi.org/10.1098/rstb.2018.0177 | DOI Listing |
J Pers
September 2025
Department of Developmental Psychology, Tilburg University, Tilburg, the Netherlands.
Objective: In recent decades, increased freedom of choice and advancements in fertility regulation have allowed individuals to follow different fertility paths. This greater autonomy provides room for personality traits to shape long-term fertility expectations, which in turn can be predictive of fertility outcomes. The present study investigates how Big Five personality traits are related to fertility expectations trajectories and outcomes.
View Article and Find Full Text PDFAm J Biol Anthropol
September 2025
Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, New York, USA.
Objective: The terminal Pleistocene is a crucial stage in the formation and differentiation of modern populations. Recent studies show that the population during this period had significant morphological variability and regional divergence. The objective of this study was to investigate the Yahuai-1 (YH1) from the Yahuai Cave site in southern China to understand human morphological diversity and population dynamics during the terminal Pleistocene in Southern East Asia.
View Article and Find Full Text PDFBull Entomol Res
September 2025
Insect Biosystematics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
This study presents the first record of Kanturski & Lee, 2024 (Aphididae: Lachninae) in South Korea, thereby extending its known distribution beyond Japan and identifying a new host plant, (Rosaceae). We describe diagnostic morphological traits across multiple life stages and compare them with those of Japanese populations. Comparative analyses with Japanese populations demonstrated consistent morphological differentiation, notably elevated ratios of the ultimate rostral segment to antennal segments across multiple morphs in the Korean population, indicating potential ecological adaptation.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Metab
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Young-onset monogenic disorders often show variable penetrance, yet the underlying causes remain poorly understood. Uncovering these influences could reveal new biological mechanisms and enhance risk prediction for monogenic diseases. Here we show that polygenic background substantially shapes the clinical presentation of maturity-onset diabetes of the young (MODY), a common monogenic form of diabetes that typically presents in adolescence or early adulthood.
View Article and Find Full Text PDF