Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair.

Methods: Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source.

Results: Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome.

Conclusions: Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451311PMC
http://dx.doi.org/10.1186/s13287-019-1213-1DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
16
stem cells
16
secretome adipose-derived
12
adipose-derived mesenchymal
12
skeletal muscle
12
extracellular vesicle
12
extracellular vesicles
12
tissue regeneration
12
secretome
11
muscle regeneration
8

Similar Publications

Background/aims: Despite medical advances in recent decades, the mortality rate of advanced liver cirrhosis remains high. Although liver transplantation remains the most effective treatment, candidate selection is limited by donor availability and alcohol abstinence requirements. Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has shown promise for the treatment of advanced cirrhosis.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF

Objectives: Demineralised dentin matrix (DDM) is an effective scaffold material for bone tissue engineering. However, the osteoimmunological mechanism of DDM remains unexplored. Th17/Treg cell balance has been noticed as a crucial factor in bone regeneration.

View Article and Find Full Text PDF

Senescence-regulating agents remodel mesenchymal stem cell-schwann cell circuitry for diabetic bone regeneration.

Biomaterials

August 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.

View Article and Find Full Text PDF

In the field of lung transplantation (LTx), the survival of lung transplant recipients (LTRs) is limited by events such as primary graft dysfunction (PGD), infections, and acute rejection (AR), which promote the development of chronic lung allograft dysfunction (CLAD). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as key players in LTx because of their roles in immune regulation, inflammation, and antigen presentation. EVs carry immunologically active molecules such as MHC class I/II proteins, cytokines, and lung self-antigens (SAgs), suggesting their involvement in infections and both AR and CLAD.

View Article and Find Full Text PDF