98%
921
2 minutes
20
A slag humidification process that aims to reduce the leachate pH of steel slag via carbonation was accomplished by simply wetting the slag and exposing it to the atmosphere for passive diffusion of atmospheric CO. The optimization parameters of the process were studied. Results showed that by wetting the slag using various aqueous solutions (deionized water, NaCl solution and NaOH solution), such that its moisture content nearly reaches its water holding capacity, a significant reduction in leachate pH could be achieved. Pretreatment of the slag using 1 M NaOH and subsequent humidification using deionized water showed the best efficiency of 1.1 pH unit reduction among the tested conditions. Slag pretreatment could substantially enhance the carbonation degree on the slag surface, leading to conservation of the treatment effectiveness up to three times the leachate replenishment using deionized water. The benefit of the alkaline treatment to promote slag carbonation could also be achieved using a low to moderate (0.005-0.1 M) NaOH solutions for humidification without the pretreatment step. A 72.5% increase in the treatment efficiency could be achieved via a humidification treatment using 0.005 M NaOH solution compared to that using deionized water. This study shows the promise of humidification treatment as a low-cost, easily implemented, and environmentally friendly slag pH neutralization process that can be applied in the field for slag treatment prior to its use or disposal in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.03.362 | DOI Listing |
Braz Oral Res
September 2025
Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil.
This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.
View Article and Find Full Text PDFMed Phys
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.
Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.
ACS Omega
September 2025
Department of Anthropology, Texas A&M University, College Station, Texas United States.
Following their defeat in the Texas Revolution of 1836, the Mexican Army disabled and buried cannons used in the defense of the Alamo. Rediscovered in 1852, 13 of these cannons have since journeyed through private collections and public exhibits before arriving at the Alamo. Among them is a bronze 4-pounder cannon, thought to have seen action during the battle itself.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan China.
Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.
View Article and Find Full Text PDF