Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vector beams have drawn considerable interest recently because of their unique properties in the transverse plane. Here we experimentally realize optical storage of a vector beam of light in a warm cell. The vector beam is tailored using a Sagnac interferometer containing an internal vortex phase plate, and the light pulse is stored in warm rubidium vapor. The preservation of both the spatial structure and the phase information is verified after retrieval. The implementation of vector beam storage in a room-temperature memory has potential for use in the fabrication of versatile vortex-based quantum networks.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.001528DOI Listing

Publication Analysis

Top Keywords

vector beam
12
optical storage
8
storage vector
8
vector beams
8
light warm
8
vector
5
experimental realization
4
realization optical
4
beams light
4
warm atomic
4

Similar Publications

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.

View Article and Find Full Text PDF

CBCT Analysis of Incisor Movement and Alveolar Bone Changes in Class II Malocclusion Treatment with Premolar Extraction using Clear Aligner: A Retrospective Study.

J Dent

September 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.. Electronic address:

Objectives: This retrospective study evaluates alveolar bone remodeling patterns and their association with incisor displacement in adults undergoing clear aligner therapy with premolar extractions for Class II malocclusion correction.

Methods: Cone-beam computed tomography (CBCT) scans of 38 maxillary and 37 mandibular incisors were analyzed. Displacement vectors for four anatomical landmarks (cusp tip [C], root apex [R], root neck midpoint [M], labial cementoenamel junction [L]) were quantified.

View Article and Find Full Text PDF

We describe a simple and effective method for the experimental generation of a variety of vector beams, including vector Laguerre-Gauss (vLG) and vector Bessel-Gauss (vBG), and experimentally realize vector Mathieu-Gauss (vMG) beams for the first time, to the best of our knowledge. We require only a single binary hologram on a Digital Micromirror Device (DMD) and use two orthogonally polarized beams with complex conjugate amplitudes to obtain independent control over both the phase and polarization structure of the generated fields. We characterize the beams using intensity measurements and Stokes polarimetry, and quantify their vector quality through concurrence.

View Article and Find Full Text PDF

TIGER: A tdTomato in vivo genome-editing reporter mouse for investigating precision-editor delivery approaches.

Proc Natl Acad Sci U S A

September 2025

Gavin Herbert Eye Institute-Robert M. Brunson Center for Translational Vision Research, Department of Ophthalmology and Visual Sciences, University of California Irvine, Irvine, CA 92697.

In vivo genome editing has the potential to address many inherited and environmental disorders. However, a major hurdle for the clinical translation of genome editing is safe, efficient delivery to disease-relevant tissues. A modality-agnostic reporter animal model that facilitates rapid, precise, and quantifiable assessment of functional delivery and editing could greatly enhance the evaluation and translation of delivery technologies.

View Article and Find Full Text PDF

The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz-Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions.

View Article and Find Full Text PDF