Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We describe a simple and effective method for the experimental generation of a variety of vector beams, including vector Laguerre-Gauss (vLG) and vector Bessel-Gauss (vBG), and experimentally realize vector Mathieu-Gauss (vMG) beams for the first time, to the best of our knowledge. We require only a single binary hologram on a Digital Micromirror Device (DMD) and use two orthogonally polarized beams with complex conjugate amplitudes to obtain independent control over both the phase and polarization structure of the generated fields. We characterize the beams using intensity measurements and Stokes polarimetry, and quantify their vector quality through concurrence. The experimental results show excellent agreement with simulations, confirming that this setup can reliably produce high-quality vector beams. The approach is compact, cost-effective, and easily adaptable, making it well-suited for a wide range of applications in beam shaping and structured light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.565480 | DOI Listing |