Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aimed to develop a novel therapeutic vaccine based on a unique B cell epitope and investigate its therapeutic potential against chronic hepatitis B (CHB) in animal models.

Methods: A series of peptides and carrier proteins were evaluated in HBV-tolerant mice to obtain an optimised therapeutic molecule. The immunogenicity, therapeutic efficacy and mechanism of the candidate were investigated systematically.

Results: Among the HBsAg-aa119-125-containing peptides evaluated in this study, HBsAg-aa113-135 (SEQ13) exhibited the most striking therapeutic effects. A novel immunoenhanced virus-like particle carrier (CR-T3) derived from the roundleaf bat HBV core antigen (RBHBcAg) was created and used to display SEQ13, forming candidate molecule CR-T3-SEQ13. Multiple copies of SEQ13 displayed on the surface of this particulate antigen promote the induction of a potent anti-HBs antibody response in mice, rabbits and cynomolgus monkeys. Sera and purified polyclonal IgG from the immunised animals neutralised HBV infection in vitro and mediated efficient HBV/hepatitis B virus surface antigen (HBsAg) clearance in the mice. CR-T3-SEQ13-based vaccination induced long-term suppression of HBsAg and HBV DNA in HBV transgenic mice and eradicated the virus completely in hydrodynamic-based HBV carrier mice. The suppressive effects on HBsAg were strongly correlated with the anti-HBs level after vaccination, suggesting that the main mechanism of CR-T3-SEQ13 vaccination therapy was the induction of a SEQ13-specific antibody response that mediated HBV/HBsAg clearance.

Conclusions: The novel particulate protein CR-T3-SEQ13 suppressed HBsAg effectively through induction of a humoural immune response in HBV-tolerant mice. This B cell epitope-based therapeutic vaccine may provide a novel immunotherapeutic agent against chronic HBV infection in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984059PMC
http://dx.doi.org/10.1136/gutjnl-2018-317725DOI Listing

Publication Analysis

Top Keywords

unique cell
8
cell epitope-based
8
surface antigen
8
therapeutic vaccine
8
hbv-tolerant mice
8
antibody response
8
hbv infection
8
mice
7
therapeutic
6
hbv
6

Similar Publications

Autoimmune nodopathies: emerging insights and clinical implications.

Curr Opin Neurol

October 2025

Neuromuscular Diseases Unit, Department of Neurology, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, CIBERER, Barcelona, Spain.

Purpose Of Review: Autoimmune nodopathies (AN) are a recognized distinct group of immune-mediated peripheral neuropathies with unique immunopathological features and therapeutic implications. This review synthesizes recent advances in their pathogenesis, diagnosis, and management, which have refined their clinical classification and informed targeted treatment strategies.

Recent Findings: AN are characterized by autoantibodies targeting surface proteins in the nodal-paranodal area (anti-contactin-1, anti-contactin-associated protein 1, anti-neurofascin-155, anti-pan-neurofascin), predominantly of IgG4 subclass.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) is a clinically indolent lymphoproliferative disorder characterized by accumulation of mature B-cell lymphocytes. Given the common CD5 co-expression, mantle cell lymphoma (MCL) is one of the most important entities in the differential diagnosis. MCL and CLL/SLL might exhibit overlapping morphologic and immunohistochemical features, making diagnosis particularly difficult in cases of composite lymphomas.

View Article and Find Full Text PDF

Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF

Objectives: To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.

Methods: Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model.

View Article and Find Full Text PDF