Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood, where the enzyme-driven micropump can be powered at the physiological blood-urea concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b01408DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
12
high localized
8
localized enzymatic
8
inorganic catalysts
8
biocompatible enzymatic
8
enzymatic micropump
8
fluid flow
8
enzymatic
7
self-assembled phage-based
4
colloids
4

Similar Publications

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF