A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once

Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces. | LitMetric

Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces.

Biomacromolecules

Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH) , KTH Royal Institute of Technology . Teknikringen 56-58, Stockholm 100 44 , Sweden.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A contact-active antibacterial approach based on the physical adsorption of a cationic polyelectrolyte onto the surface of a cellulose material is today regarded as an environment-friendly way of creating antibacterial surfaces and materials. In this approach, the electrostatic charge of the treated surfaces is considered to be an important factor for the level of bacteria adsorption and deactivation/killing of the bacteria. In order to clarify the influence of surface charge density of the cellulose on bacteria adsorption as well as on their viability, bacteria were adsorbed onto cellulose model surfaces, which were modified by physically adsorbed cationic polyelectrolytes to create surfaces with different positive charge densities. The surface charge was altered by the layer-by-layer (LbL) assembly of cationic polyvinylamine (PVAm)/anionic cellulose nanofibril/PVAm onto the initially differently charged cellulose model surfaces. After exposing the LbL-treated surfaces to Escherichia coli in aqueous media, a positive correlation was found between the adsorption of bacteria as well as the ratio of nonviable/viable bacteria and the surface charge of the LbL-modified cellulose. By careful colloidal probe atomic force microscopy measurements, it was estimated, due to the difference in surface charges, that interaction forces at least 50 nN between the treated surfaces and a bacterium could be achieved for the surfaces with the highest surface charge, and it is suggested that these considerable interaction forces are sufficient to disrupt the bacterial cell wall and hence kill the bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b00297DOI Listing

Publication Analysis

Top Keywords

surface charge
16
cellulose model
12
model surfaces
12
surfaces
9
bacteria
8
treated surfaces
8
bacteria adsorption
8
interaction forces
8
charge
7
cellulose
7

Similar Publications

Marine biofouling poses significant economic and environmental challenges, highlighting the need for effective antifouling coatings. We report amphiphilic poly(SBMA--EGDEA) copolymer coatings that resist both marine diatom adhesion and sediment adsorption. The coatings were synthesized via surface-initiated ATRP and RAFT polymerization using hydrophilic sulfobetaine methacrylate (SBMA) and hydrophobic ethylene glycol dicyclopentenyl ether acrylate (EGDEA).

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

Protein Deamidation Reduced Digestive Resistance and Amyloid Antigenicity of Soy Proteins via Depolymerization.

J Agric Food Chem

September 2025

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.

Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.

View Article and Find Full Text PDF

We present a method for probing the quantum capacitance associated with the Rydberg transition of surface electrons on liquid helium using radio-frequency (rf) reflectometry. Resonant microwave excitation of the Rydberg transition induces a redistribution of image charges on capacitively coupled electrodes, giving rise to a quantum capacitance originating from adiabatic state transitions and the finite curvature of the energy bands. By applying frequency-modulated resonant microwaves to drive the Rydberg transition, we systematically measured a capacitance sensitivity of 0.

View Article and Find Full Text PDF

Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics architecture is a promising novel quantum computing platform. Understanding the exact physical nature of the electron-on-neon (eNe) charge states is important for realizing this platform's potential for quantum technologies. We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators.

View Article and Find Full Text PDF