Characterization of cell fate probabilities in single-cell data with Palantir.

Nat Biotechnol

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir's resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549125PMC
http://dx.doi.org/10.1038/s41587-019-0068-4DOI Listing

Publication Analysis

Top Keywords

cell fate
12
single-cell rna
8
rna sequencing
8
differentiating systems
8
cell
5
characterization cell
4
fate
4
fate probabilities
4
probabilities single-cell
4
single-cell data
4

Similar Publications

Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.

View Article and Find Full Text PDF

Microglia, the resident macrophages in the central nervous system (CNS), have been intensively studied using rodent genetic models, including the Cre-loxP system. Among them are tamoxifen (TAM)-inducible CX3C chemokine receptor 1 (Cx3cr1)-Cre mouse lines (Cx3cr1), which have enabled in-depth analyses of the biological features and functions of myeloid cells, including microglia. Occasionally, these Cx3cr1 tools have yielded conflicting biological outcomes, the underlying mechanism of which remains unclear.

View Article and Find Full Text PDF

Divergent metabolic rewiring shapes altered innate immunity.

Cell Immunol

September 2025

Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Both trained immunity (TRIM) and endotoxin tolerance (ET) initiate similar metabolic reprogramming characterized by enhanced glycolysis following an initial stimulus. However, TRIM exhibited heightened immune activation upon restimulation, whereas ET showed suppressed innate immune response. This divergence is attributed to distinct metabolic intermediates accumulated after the initial stimulation.

View Article and Find Full Text PDF

Hormonal regulation of cell fate plasticity of xylem-pole-pericycle lineage in Arabidopsis roots.

Mol Plant

September 2025

Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:

In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF