98%
921
2 minutes
20
β-glucosidases play a critical role among the enzymes in enzymatic cocktails designed for plant biomass deconstruction. By catalysing the breakdown of β-1, 4-glycosidic linkages, β-glucosidases produce free fermentable glucose and alleviate the inhibition of other cellulases by cellobiose during saccharification. Despite this benefit, most characterised fungal β-glucosidases show weak activity at high glucose concentrations, limiting enzymatic hydrolysis of plant biomass in industrial settings. In this study, structural analyses combined with site-directed mutagenesis efficiently improved the functional properties of a GH1 β-glucosidase highly expressed by Trichoderma harzianum (ThBgl) under biomass degradation conditions. The tailored enzyme displayed high glucose tolerance levels, confirming that glucose tolerance can be achieved by the substitution of two amino acids that act as gatekeepers, changing active-site accessibility and preventing product inhibition. Furthermore, the enhanced efficiency of the engineered enzyme in terms of the amount of glucose released and ethanol yield was confirmed by saccharification and simultaneous saccharification and fermentation experiments using a wide range of plant biomass feedstocks. Our results not only experimentally confirm the structural basis of glucose tolerance in GH1 β-glucosidases but also demonstrate a strategy to improve technologies for bioethanol production based on enzymatic hydrolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426972 | PMC |
http://dx.doi.org/10.1038/s41598-019-41300-3 | DOI Listing |
Acta Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Facultat De Medicina i Ciències De La Salut, Universitat Rovira i Virgili, Reus, Spain.
High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.
View Article and Find Full Text PDFBMJ
September 2025
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Objective: To determine the effect of a prepregnancy lifestyle intervention on glucose tolerance in people at higher risk of gestational diabetes mellitus.
Design: Single centre randomised controlled trial (BEFORE THE BEGINNING).
Setting: University hospital in Trondheim, Norway.