Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prostate cancer is the second leading cause of death from cancer, behind lung cancer, for men in the U. S, with nearly 30,000 deaths per year. A key problem is the difficulty in distinguishing, after biopsy, between significant cancers that should be treated immediately and clinically insignificant tumors that should be monitored by active surveillance. Prostate cancer has been over-treated; a recent European randomized screening trial shows overtreatment rates of 40%. Overtreatment of insignificant tumors reduces quality of life, while delayed treatment of significant cancers increases the incidence of metastatic disease and death. We develop a decision analysis approach based on simulation and probability modeling. For a given prostate volume and number of biopsy needles, our rule is to treat if total length of cancer in needle cores exceeds c, the cutoff value, with active surveillance otherwise, provided pathology is favorable. We determine the optimal cutoff value, c*. There are two misclassification costs: treating a minimal tumor and not treating a small or medium tumor (large tumors were never misclassified in our simulations). Bayes' Theorem is used to predict the probabilities of minimal, small, medium, and large cancers given the total length of cancer found in biopsy cores. A 20 needle biopsy in conjunction with our new decision analysis approach significantly reduces the expected loss associated with a patient in our target population about to undergo a biopsy. Longer needles reduce expected loss. Increasing the number of biopsy cores from the current norm of 10-12 to about 20, in conjunction with our new decision model, should substantially improve the ability to distinguish minimal from significant prostate cancer by minimizing the expected loss from over-treating minimal tumors and delaying treatment of significant cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10729-019-09480-6DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
insignificant tumors
12
expected loss
12
clinically insignificant
8
cancer
8
bayes' theorem
8
active surveillance
8
treatment cancers
8
decision analysis
8
analysis approach
8

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Influence of life expectancy on shared decision-making for prostate cancer screening.

Cancer Causes Control

September 2025

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Purpose: The U.S. Preventive Services Task Force recommends that men aged 55-69 years undergo shared decision-making (SDM) regarding prostate cancer (PCa) screening, and routine screening is not recommended for older men or those with limited life expectancy.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF