Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the "ARM + FPGA" architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427298PMC
http://dx.doi.org/10.3390/s19051255DOI Listing

Publication Analysis

Top Keywords

system
13
seabed observation
12
observation system
12
observation
9
seabed real-time
8
real-time sensing
8
sensing system
8
system in-situ
8
in-situ long-term
8
long-term multi-parameter
8

Similar Publications

Objective: To develop and implement a method for determining the postmortem interval and the marginal errors of its estimates under conditions of linearly varying external temperature in the format of an online application.

Material And Methods: A computer-assissted numerical search for the absolute minimum point of the objective function obtained from a system of nonlinear equations reflecting the results of double rectal or cranioencephalic thermometry of a corpse under conditions of linearly varying external temperature was carried out. The search algorithm was generalized to possible marginal errors in measuring the initial indicators of temperature and time.

View Article and Find Full Text PDF

Unlabelled: Crimes against the sexual integrity of the individual represent one of the most serious forms of violence.

Objective: To perform a retrospective epidemiological analysis with the systematization of analytical data on the performed forensic medical examinations (FMEs) of survivors of sexual abuse in order to increase the effectiveness of the system of preventive measures against such crimes.

Material And Methods: The data from the industry statistical report №42 were analyzed.

View Article and Find Full Text PDF

Toward Human-Centered Artificial Intelligence for Users' Digital Well-Being: Systematic Review, Synthesis, and Future Directions.

JMIR Hum Factors

September 2025

Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.

Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.

Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.

View Article and Find Full Text PDF

Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.

View Article and Find Full Text PDF