Effect of light conditions on mixotrophic cultivation of green microalgae.

Bioresour Technol

Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea. Electronic address:

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current research aimed to increase mixotrophic biomass from various organic carbon sources by exploring best light conditions. Three substrates glucose, acetic acid and glycerol were studied for their effects on mixotrophic microalgae cultivation under four light conditions. Light irradiance exhibited variability in growth response and photosynthetic efficiency based on type of substrates used in mixotrophic growth. Each substrate showed variability in light requirements for their effective assimilations. From growth responses, glucose and acetic acid respectively exhibited heterotrophic and mixotrophic (better growth in light) natures. Continuous light-deficient condition was adequate for effective mixotrophic growth as well as energy saving for glucose. However, light-sufficient condition required for effective acetic acid supported mixotrophic growth. Mixotrophic benefits from glycerol and its uptake by Chlorella protothecoides was negligible in all light conditions. Investigation of heterotrophic biomass contribution by various substrates in overall mixotrophic yield, glucose offered maximum approx. 43% contribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.03.024DOI Listing

Publication Analysis

Top Keywords

light conditions
16
acetic acid
12
mixotrophic growth
12
mixotrophic
9
glucose acetic
8
substrates mixotrophic
8
light
7
growth
6
conditions mixotrophic
4
mixotrophic cultivation
4

Similar Publications

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Transition of Structurally Distinct Amyloids in the Degradation of Protein Materials.

J Phys Chem B

September 2025

Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.

Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.

View Article and Find Full Text PDF