Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451359PMC
http://dx.doi.org/10.1098/rsob.190009DOI Listing

Publication Analysis

Top Keywords

role autophagy
8
common mosquito-borne
8
mosquito-borne arboviruses
8
autophagy replication
4
replication pathogenesis
4
pathogenesis common
4
mosquito-borne
4
mosquito-borne flavi-
4
flavi- alphaviruses
4
alphaviruses arboviruses
4

Similar Publications

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Cadmium (Cd) is a heavy metal that exhibits strong carcinogenic properties and promotes breast cancer (BC) progression. Autophagic flux dysfunction is involved in Cd-induced BC progression, but the underlying molecular mechanisms remain unclear. Here, it is observed that impaired autophagic flux and metabolic reprogramming are notable features related to Cd-induced proliferation, migration, and invasion in BC cell lines, including T-47D and MCF-7 cells.

View Article and Find Full Text PDF

Hypoxia promotes pancreatic adenocarcinoma progression by stabilizing ID1 via TRIM21 suppression.

Front Oncol

August 2025

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.

Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.

Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.

View Article and Find Full Text PDF

Regulation of angiogenesis and cancer cell proliferation by human vault RNA1-2.

NAR Cancer

September 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.

View Article and Find Full Text PDF

Introduction: Ischemic stroke is a leading cause of mortality and disability worldwide, with limited therapeutic options and high rates of recurrence. Mitochondrial dysfunction plays a critical role in neuronal injury during ischemia-reperfusion, making mitochondrial autophagy a potential therapeutic target. Gypenoside XLIX, a major active metabolite of Gynostemma pentaphyllum, exhibits antioxidant and organ-protective properties, but its effects on neuronal mitochondrial damage in stroke remain unclear.

View Article and Find Full Text PDF