Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Blue light has been shown to elicit a tumbling response in , a nonphototrophic bacterium. The exact mechanism of this phototactic response is still unknown. Here, we quantify phototaxis in by analyzing single-cell trajectories in populations of free-swimming bacteria before and after light exposure. Bacterial strains expressing only one type of chemoreceptor reveal that all five receptors (Aer, Tar, Tsr, Tap, and Trg) are capable of mediating responses to light. In particular, light exposure elicits a running response in the Tap-only strain, the opposite of the tumbling responses observed for all other strains. Therefore, light emerges as a universal stimulus for all chemoreceptors. We also show that blue light exposure causes a reversible decrease in swimming velocity, a proxy for proton motive force. This result is consistent with a previously proposed hypothesis that, rather than sensing light directly, chemoreceptors sense light-induced perturbations in proton motive force, although other factors are also likely to contribute. Our findings provide new insights into the mechanism of phototaxis, showing that all five chemoreceptor types respond to light and their interactions play an important role in cell behavior. Our results also open up new avenues for examining and manipulating taxis. Since light is a universal stimulus, it may provide a way to quantify interactions among different types of receptors. Because light is easier to control spatially and temporally than chemicals, it may be used to study swimming behavior in complex environments. Since phototaxis can cause migration of bacteria in light gradients, light may be used to control bacterial density for studying density-dependent processes in bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509653PMC
http://dx.doi.org/10.1128/JB.00762-18DOI Listing

Publication Analysis

Top Keywords

blue light
12
light
12
light exposure
12
light universal
8
chemoreceptors blue
8
bacteria light
8
universal stimulus
8
proton motive
8
motive force
8
universal signal
4

Similar Publications

Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.

Methods: A virtual driving simulator was utilized to carry out the experiment.

View Article and Find Full Text PDF

Record-High Photoluminescence Efficiency and Excellent Scintillation in Two-Dimensional Diamine Hybrid Copper(I) Halides.

ACS Appl Mater Interfaces

September 2025

Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, environments and Materials, Guangxi University, Nanning 530004, China.

To date, Cu(I)-based metal halides with high photoluminescence quantum yields (PLQYs) have primarily focused on their zero-dimensional or one-dimensional structures, significantly reflecting the charge or carrier localization. Designing two-dimensional (2D) hybrid copper(I) halides remains a significant challenge for optoelectronic applications, particularly in simultaneously achieving high PLQY and exceptional structural stability. Here, we report a novel series of 2D hybrid Cu(I) halides, (TDMP)CuX (TDMP = 2,5-dimethylpiperazine and X = Cl, Br), synthesized through simple solution-cooling crystallization methods.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF