Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Alterations and asymmetries in trunk motions during activities of daily living, involving lower extremities, are suggested to cause higher spinal loads in persons with unilateral lower limb amputation. Given the repetitive nature of most activities of daily living, knowledge of the amount of increase in spinal loads is important for designing interventions aimed at prevention of secondary low back pain due to potential fatigue failure of spinal tissues. The objective of this study was to determine differences in trunk muscle forces and spinal loads between persons with and without lower limb amputation when performing sit-to-stand and stand-to-sit tasks.

Methods: Kinematics of the pelvis and thorax, obtained from ten males with unilateral transfemoral lower limb amputation and 10 male uninjured controls when performing sit-to-stand and stand-to-sit activities, were used within a non-linear finite element model of the spine to estimate trunk muscle forces and resultant spinal loads.

Findings: The peak compression force, medio-lateral (only during stand-to-sit), and antero-posterior shear forces were respectively 348 N, 269 N, and 217 N larger in person with vs. without amputation. Persons with amputation also experienced on average 171 N and 53 N larger mean compression force and medio-lateral shear force, respectively.

Interpretation: While spinal loads were larger in persons with amputation, these loads were generally smaller than the reported threshold for spinal tissue injury. However, a rather small increase in spinal loads during common activities of daily living like walking, sit-to-stand, and stand-to-sit may nevertheless impose a significant risk of fatigue failure for spinal tissues due to the repetitive nature of these activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503321PMC
http://dx.doi.org/10.1016/j.clinbiomech.2019.02.021DOI Listing

Publication Analysis

Top Keywords

spinal loads
24
sit-to-stand stand-to-sit
16
trunk muscle
12
muscle forces
12
loads persons
12
activities daily
12
daily living
12
lower limb
12
limb amputation
12
spinal
10

Similar Publications

Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.

View Article and Find Full Text PDF

Aim: To summarize the literature on quantitative measures of physical demands in eldercare, with attention to differences between temporary and permanent workers, and to identify gaps to guide future physiological research.

Methods: We searched Scopus, Web of Science, and PubMed for English and Swedish peer-reviewed studies on physical demands in eldercare. Risk of bias was assessed, and descriptive data extracted.

View Article and Find Full Text PDF

Background Sacroiliac joint fusion is performed to stabilize and fuse the joint in patients with degenerative sacroiliitis and joint dysfunction. While several posterior techniques and implants exist as alternatives to lateral approaches, biomechanical and clinical performance data for these systems used as standalone remains limited. This article provides a preliminary cadaveric and clinical assessment of a novel posterior intra-articular sacroiliac fusion implant system.

View Article and Find Full Text PDF

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.

View Article and Find Full Text PDF