98%
921
2 minutes
20
Plasmonic nanostructure/semiconductor composites are receiving great interest as powerful photocatalytic platforms able to increase solar energy conversion efficiency compared to more traditional approaches. The possibility to grow a thin titania shell onto the gold nanoparticle, thus substantially increasing the metal-semiconductor area of contact, is expected to be ideal for photocatalytic water reduction, especially if the titania (TiO2) coating displays limited thickness and high crystallinity. We argue however that the morphology of the underlying gold nanoparticle and the quality of the interface are the main drivers of photocatalytic performance. Herein, we show how we can synthesize TiO2-coated gold nanostar- and gold nanorod-based photocatalysts and identify the most important design parameters that one should be focusing on for the optimization of hot electron-based photocatalysts. In addition to nanoparticle morphology and interface quality, we determine that the integrated absorptivity of the plasmon band and the uniformity and crystallinity of the semiconductor shell are important, even though to a lesser extent. These results may prove interesting not only to increase production rates in hydrogen evolution reactions or other chemical conversions, but also to decouple and understand additional mechanisms driving photocatalysis, other than the sequential, hot electron mediated one, as we reported before.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8fd00152a | DOI Listing |
ACS Omega
September 2025
Nanohybrids and Innovation Coating Research Group (NHIC), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand.
Using leaf fibers from pineapple (PALFs) as a model dual-purpose plant, we deliberately explore the effect of bio- and semibiobased treatment using xylanase, cellulase, and a mixture of pectinase and amylase. We assess these treatments for their potential to selectively and precisely remove lignocellulosic components. Additionally, we examine how they modify the relative content of cellulose, hemicellulose, and lignin, as these are key factors affecting the physical appearance, dimensional structures, and mechanical integrity.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
The development of high-performance near-ultraviolet organic light-emitting diodes (NUV-OLEDs) remains challenging due to their intrinsic wide-bandgap characteristics. Therefore, this study fully exploits the weak electron-accepting characteristics of the PPI group, combined with its high photoluminescence quantum yield (PLQY) and excellent thermal stability. Through a precise molecular structure modulation strategy involving direct introduction of electron-donating diphenylamine groups into the side phenyl ring and systematic integration of donor/acceptor units with tailored electronic properties into the main backbone, effective control of excited-state characteristics and their spatial distribution was successfully achieved.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:
Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.
View Article and Find Full Text PDFDalton Trans
September 2025
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
We report a novel, simple, and environmentally friendly ultrasound-assisted method for the synthesis of CsAgBiBr nanocrystals. The synthesis is performed entirely at room temperature and under ambient air, without the need for inert atmospheres. Transmission electron microscopy (TEM) confirms an average particle size of approximately 6 nm, while X-ray diffraction (XRD) and Raman spectroscopy verify the high phase purity and structural stability of the nanocrystals.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Aims: Hydrogels have applications as food additives and cosmetics, as well as medical applications such as the drug delivery and scaffolding materials for cells. There is high demand for new hydrogels that can facilitate technological innovation. Here, we report a galactomannan-like gelling agent (hydrogel) produced by the sheath-forming bacterium Sphaerotilus hippei.
View Article and Find Full Text PDF