Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-glycopeptides.

Anal Chim Acta

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. Electronic address:

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrophilic interaction liquid chromatography is a significant strategy for the separation and enrichment of glycoproteins and glycopeptides. A layered imine-based covalent organic polymer with mesopores (denoted as p-TpBDH) was successfully fabricated by a facile solvothermal method. Then p-TpBDH-OH with abundant hydrophilic groups was evolved from p-TpBDH by the direct reduction. 36 and 40 glycopeptides were identified from IgG digests respectively by p-TpBDH and p-TpBDH-OH. Furthermore, the p-TpBDH-OH exhibits superior selectivity (IgG: BSA = 1: 250) for glycopeptides compared with the p-TpBDH. Encouragingly, a total of 463 glycopeptides assigned to 173 glycoproteins were finally identified from only 2 μL human serum by the p-TpBDH-OH. Compared with p-TpBDH, abundant hydrophilic and nitrogen-containing affinity sites of p-TpBDH-OH facilitate effective hydrophilic interaction between the polymeric material and glycopeptides. All the results demonstrate the functionalized hydrophilic covalent organic polymer has great potential in large-scale N-glycoproteomic research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2018.12.063DOI Listing

Publication Analysis

Top Keywords

covalent organic
12
hydrophilic interaction
8
organic polymer
8
abundant hydrophilic
8
compared p-tpbdh
8
hydrophilic
5
glycopeptides
5
p-tpbdh
5
p-tpbdh-oh
5
facile synthesis
4

Similar Publications

Lutetium (Lu(III)), a heavy rare earth element, plays a critical role in advanced industrial processes and nuclear medicine applications. Given its high economic value and potential environmental risks, the recovery of Lu(III) from medical wastewater is both necessary and urgent. However, previous studies on the adsorption behavior of Lu(III) have been limited by low adsorption capacity, competition from coexisting metal ions, and the influence of environmental temperature.

View Article and Find Full Text PDF

A novel molecularly imprinted 3D COF-based magnetic solid-phase extraction combined with UHPLC-MS/MS to detect trace residues of acyclovir, penciclovir and ganciclovir in animal-derived food.

Food Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The residues of antiviral drugs acyclovir (ACV), penciclovir (PCV) and ganciclovir (GCV) in foods, particularly in ready-to-eat products, pose a significant threat to human health, making it urgent to develop a rapid and sensitive method for their detection. Herein, we designed a novel magnetic molecularly imprinted three-dimensional covalent organic framework (MICOF@FeO) for selective extraction of these antiviral drugs from complicated food matrix. The prepared MICOF@FeO integrates molecular recognition ability, 3D COF structural advantages and magnetic responsiveness, providing high selectivity, large adsorption capacity and facile operation for magnetic solid-phase extraction (MSPE).

View Article and Find Full Text PDF

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

An Activatable and Covalent Tumor-Associated Antigen Capturer Enabling Systemic Injection for Promoted Antitumor Immunity.

J Am Chem Soc

September 2025

Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.

Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.

View Article and Find Full Text PDF

Construction of Hollow Structured Covalent Organic Framework with Chiral Internal Catalytic Sites for Asymmetric Hydrogenation.

Small

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

The functionality of covalent organic frameworks (COFs) is usually highly related to their morphologies. Among various morphologies, the hollow-structured COFs have recently attracted intense attention due to their unique properties. Herein, the synthesis of hollow structured COFs are first reported with the chiral internal sites via combining the chiral templating method with the acid etching approach.

View Article and Find Full Text PDF