Engineering Robust Production Microbes for Large-Scale Cultivation.

Trends Microbiol

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkel

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Systems biology and synthetic biology are increasingly used to examine and modulate complex biological systems. As such, many issues arising during scaling-up microbial production processes can be addressed using these approaches. We review differences between laboratory-scale cultures and larger-scale processes to provide a perspective on those strain characteristics that are especially important during scaling. Systems biology has been used to examine a range of microbial systems for their response in bioreactors to fluctuations in nutrients, dissolved gases, and other stresses. Synthetic biology has been used both to assess and modulate strain response, and to engineer strains to improve production. We discuss these approaches and tools in the context of their use in engineering robust microbes for applications in large-scale production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2019.01.006DOI Listing

Publication Analysis

Top Keywords

engineering robust
8
systems biology
8
synthetic biology
8
production
4
robust production
4
production microbes
4
microbes large-scale
4
large-scale cultivation
4
systems
4
cultivation systems
4

Similar Publications

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Radiation-induced single event effects in vertically prolonged drain dual gate Si Ge source TFET.

J Mol Model

September 2025

Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.

Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.

View Article and Find Full Text PDF

Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.

View Article and Find Full Text PDF

We report on the development of a robust microfluidic nozzle capable of generating replenishing liquid sheet targets with sub-micron thickness at up to kHz repetition rates, a λ/20 surface flatness over areas of at least 100 μm2, and in-vacuum dimensions of 6 × 1.5 mm2. The platform was evaluated for stability under hundreds of 4.

View Article and Find Full Text PDF