98%
921
2 minutes
20
Great amounts of nutrients discharged into the urbanized coastal areas, which are continuously subject to violently anthropogenic metal contamination, will result in eutrophication and hypoxic episode. In order to study the effects of dissolved oxygen (DO), salinity, nitrogen and phosphorus on the release of six metals including Zn, Pb, Cd, Cu, As and Cr from coastal sediments, a series of 60-days microcosm experiments consisting of sediments and seawater were conducted. Severe hypoxia could result in the enhanced peak values of Pb, Cd, Cu and Cr concentrations in the overlying water. A higher level of water salinity could elevate the peak value of As concentration in water column, and a higher level of nitrogen could increase the peak value of Zn concentration in water. The exchange fluxes demonstrated that the diffusion from the sediments was a dominant process during the first 10 days, However, a relative equilibrium of adsorption and precipitation in the sediment-water interface reached during the later periods. In addition, the bioavailability of the studied metals in sediments was elevated under severe hypoxia, or a high level of water salinity, or high levels of nitrogen and phosphorus. The results of linear regression analysis suggested that higher metal bioavailability in sediments could facilitate the metal release, but the process could be restrained by the higher aqueous phosphorus due to the precipitation of metal phosphates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.02.288 | DOI Listing |
Environ Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFDesert plant communities play an irreplaceable role in maintaining the ecological balance of arid areas. Understanding the spatial distribution pattern of desert plant diversity and its environmental response mechanism is particularly important for the protection of regional biodiversity, and combining phylogenetic information can provide more in-depth insights. To this end, this study conducted a survey of desert plant communities along the southeast to northwest direction of the Hexi Corridor, revealing the variation patterns of species and phylogenetic diversity (PD) indicators along longitude, latitude, and altitude, and explored the driving factors of these patterns in combination with geographical, climatic, and soil factors.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDF