98%
921
2 minutes
20
The final quality of pharmaceutically active herbal preparation is significantly contributed by extraction procedures. Hence in the last decade Microwave assisted extraction (MAE) has been introduced. This is an efficient and modern tool with multiple benefits as compared to the traditional methods of extraction. The benefits are in terms of reduction in cost, time of extraction, amount of solvent used, energy consumptions and low CO emission. Therefore present study was planned to give brief overview on applications of microwave assisted extraction of natural products. It is also discussed that how the various parameters of microwave assisted extraction like nature of the solvent, temperature, particle size, power level of microwaves and time of irradiation influences the extract yields of plant parts. This review also emphasizes the application of MAE for increased production of phyto-medicines, sweeteners, spices and all other commercial products related to botanicals.
Download full-text PDF |
Source |
---|
Bioorg Chem
September 2025
Entomology Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
A strategically engineered, eco-conscious synthetic platform was developed to access a novel library of eighteen polyfunctionalized pyridine-based heterocycles through high-efficiency multicomponent and annulation strategies, using 2-amino-4-(4-chlorophenyl)-6-(p-tolyl)nicotinonitrile (M) as a privileged core. Structural diversity was maximized by integrating potent pharmacophores, including pyrido[2,3-d]pyrimidines, naphthyridines, triazines, and fused pyrrolo/tetrazolo motifs, via both conventional and accelerated (microwave/ultrasound-assisted) routes, affording excellent yields with high structural fidelity as confirmed by IR, H/C NMR, and mass spectrometry. Biological evaluation revealed that all synthesized compounds had excellent larvicidal efficacy against Culex pipiens larvae, especially 15 and 9, emerging as lead candidates that exhibited exceptional LC₅₀ values of 0.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Washington University, Physics Department, Saint Louis, Missouri 63130, USA.
Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics architecture is a promising novel quantum computing platform. Understanding the exact physical nature of the electron-on-neon (eNe) charge states is important for realizing this platform's potential for quantum technologies. We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University P. O. 43713 New Galala Egypt
Isatin (1-indole-2,3-dione) is a privileged nitrogen-containing heterocyclic framework that has received considerable attention in anticancer drug discovery owing to its general biological behavior and structural diversity. This review focuses on isatin-heterocyclic hybrids as a valuable model in the development of new anti-cancer drugs that may reduce side effects and help overcome drug resistance, discussing their synthetic approaches and mechanism of action as apoptosis induction through kinase inhibition. With various chemical modifications, isatin had an excellent ability to build powerful isatin hybrids and conjugates targeting multiple oncogenic pathways.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biological Sciences, School of Science Hampton University Hampton Virginia USA.
Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Herein, we report a simple, microwave-assisted and open-air strategy for gram-scale C3-alkylation of indoles, along with an economically viable strategy for epoxide opening followed by α-alkylation, using the [RuCl(bpy){-PhPCHCONCHPPh-}-κ-(,,,,)] complex (hereafter referred to as [PNP-Ru]). This transformation proceeds an alcohol dehydrogenation (oxidation) mechanism, with water being the sole byproduct in both reactions, underscoring the environmentally benign and sustainable nature of the methodology. The protocol efficiently delivers both mono- and bis(indolyl) derivatives in good to excellent yields.
View Article and Find Full Text PDF