Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206CD163 tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370915PMC
http://dx.doi.org/10.1016/j.cell.2018.12.038DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
amoeboid cancer
12
tumor progression
8
immune microenvironment
8
cells
7
cancer
6
tumor
5
regional activation
4
activation myosin
4
myosin cancer
4

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF

Kinesin family member 14 (KIF14) has been implicated in the progression of multiple cancer types, yet its role in colorectal cancer (CRC) metastasis remains undefined. Here, we assesse KIF14 expression in CRC specimens and explore its clinical and functional significance. KIF14 upregulation is frequently observed in CRC tissues and is correlated with advanced tumor stage and reduced overall survival.

View Article and Find Full Text PDF