Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372288PMC
http://dx.doi.org/10.7554/eLife.40988DOI Listing

Publication Analysis

Top Keywords

fact ubp10
8
h2b deubiquitination
8
deubiquitination nucleosome
8
nucleosome dynamics
8
dna replication
8
fact
7
ubp10
6
ubp10 collaborate
4
collaborate modulate
4
h2b
4

Similar Publications

Monoubiquitinated histone H2B at K123 in yeast (K120 in humans) is a transient modification that is both attached and removed during transcription. H2B is ubiquitinated in yeast by the E2/E3 pair, Rad6/Bre1, and deubiquitinated by two enzymes, Ubp8 and Ubp10. Previous studies had shown that Ubp10 has higher activity on ubiquitinated H2A/H2B dimers than on intact nucleosomes, but that activity on nucleosomes is higher in the presence of the histone chaperone, FACT.

View Article and Find Full Text PDF

Mono-ubiquitination of histone H2B (H2B-Ub1) is a conserved modification that plays central role in regulating numerous biological processes including the DNA damage response, gene transcription, and DNA replication. Previous studies have revealed that H2B-Ub1 promotes recovery from replication stress by mediating Rad53 phosphorylation (Rad53-P), and activation of the intra-S replication checkpoint, in order to limit fork progression, and associated DNA damage. Since such mono-ubiquitination is a reversible process, we examined the role of H2B-Ub1 deubiquitination during replication stress.

View Article and Find Full Text PDF

Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes.

View Article and Find Full Text PDF