Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we investigated brain dynamics from electroencephalographic (EEG) signals during affective tactile stimulation conveyed by the dynamical contact with different fabrics. Thirty-three healthy subjects (16 females) were enrolled to interact with a haptic device able to mimic caress-like stimuli conveyed by strips of different fabrics moved back and forth at different velocities. Specifically, two velocity levels (i.e., 9.4 and 65 mm/sec) and two kinds of fabric (i.e., burlap and silk) were selected to deliver pleasant and unpleasant affective elicitations, according to subjects' self-assessment. EEG power spectra and functional connectivity were then calculated and analyzed. Experimental results, reported in terms of p-value topographic maps, demonstrated that caresses administered through unpleasant fabrics increased brain activity in the θ (4-8 Hz), α (8-14 Hz), and β (14-30 Hz) bands, whereas the use of pleasant fabrics enhanced functional connections in specific areas (e.g., frontal, occipital, and temporal cortices) depending on the oscillations frequency and caressing velocity. Furthermore, we adopted K-NN algorithms to automatically recognize the pleasantness of the haptic stimulation at a single-subject level using EEG power spectra, achieving a recognition accuracy up to 74.24%. Finally, we showed how brain oscillation power in the α and β bands over contralateral frontal- and central-cortex were the most informative features characterizing the pleasantness of a tactile stimulus on the forearm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2019.2893324DOI Listing

Publication Analysis

Top Keywords

brain dynamics
8
stimuli conveyed
8
eeg power
8
power spectra
8
fabrics
5
brain
4
dynamics induced
4
induced pleasant/unpleasant
4
pleasant/unpleasant tactile
4
tactile stimuli
4

Similar Publications

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Background: Physical resilience-the ability to withstand, recover, or adapt after a stressor-is critical in older adults facing acute insults. We conceptualize physical resilience to comprise two distinct but related components: resistance (immediate physiological response to the stressor) and recovery (subsequent health changes). These two components were used to evaluate how individuals respond to hip fracture-a common and severe geriatric stressor.

View Article and Find Full Text PDF

Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF