98%
921
2 minutes
20
In this study, we investigated brain dynamics from electroencephalographic (EEG) signals during affective tactile stimulation conveyed by the dynamical contact with different fabrics. Thirty-three healthy subjects (16 females) were enrolled to interact with a haptic device able to mimic caress-like stimuli conveyed by strips of different fabrics moved back and forth at different velocities. Specifically, two velocity levels (i.e., 9.4 and 65 mm/sec) and two kinds of fabric (i.e., burlap and silk) were selected to deliver pleasant and unpleasant affective elicitations, according to subjects' self-assessment. EEG power spectra and functional connectivity were then calculated and analyzed. Experimental results, reported in terms of p-value topographic maps, demonstrated that caresses administered through unpleasant fabrics increased brain activity in the θ (4-8 Hz), α (8-14 Hz), and β (14-30 Hz) bands, whereas the use of pleasant fabrics enhanced functional connections in specific areas (e.g., frontal, occipital, and temporal cortices) depending on the oscillations frequency and caressing velocity. Furthermore, we adopted K-NN algorithms to automatically recognize the pleasantness of the haptic stimulation at a single-subject level using EEG power spectra, achieving a recognition accuracy up to 74.24%. Finally, we showed how brain oscillation power in the α and β bands over contralateral frontal- and central-cortex were the most informative features characterizing the pleasantness of a tactile stimulus on the forearm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2893324 | DOI Listing |
Mol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2025
Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.
View Article and Find Full Text PDFJ Am Geriatr Soc
September 2025
Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China.
Background: Physical resilience-the ability to withstand, recover, or adapt after a stressor-is critical in older adults facing acute insults. We conceptualize physical resilience to comprise two distinct but related components: resistance (immediate physiological response to the stressor) and recovery (subsequent health changes). These two components were used to evaluate how individuals respond to hip fracture-a common and severe geriatric stressor.
View Article and Find Full Text PDFNat Methods
September 2025
Department of Radiology, Michigan State University, East Lansing, MI, USA.
Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:
Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.
View Article and Find Full Text PDF