98%
921
2 minutes
20
The isohydry-anisohydry spectrum has become a popular way to characterize plant drought responses and recovery processes. Despite the proven utility of this framework for understanding the interconnected physiological changes plants undergo in response to water stress, new challenges have arisen pertaining to the traits and tradeoffs that underlie this concept. To test the utility of this framework for understanding hydraulic traits, drought physiology and recovery, we applied a 6 wk experimental soil moisture reduction to seven tree species followed by a 6 wk recovery period. Throughout, we measured hydraulic traits and monitored changes in gas exchange, leaf water potential, and hydraulic conductivity. Species' hydraulic traits were not coordinated, as some anisohydric species had surprisingly low resistance to embolism (P ) and negative safety margins. In addition to widespread hydraulic damage, these species also experienced reductions in photosynthesis and stem water potential during water stress, and delayed recovery time. Given that we observed no benefit of being anisohydric either during or after drought, our results indicate the need to reconsider the traits and tradeoffs that underlie anisohydric behavior, and to consider the environmental, biological and edaphic processes that could allow this strategy to flourish in forests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15699 | DOI Listing |
Tree Physiol
September 2025
Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.
View Article and Find Full Text PDFAoB Plants
October 2025
Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.
To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2025
Department of Botany, University of Innsbruck, Innsbruck, Austria.
Shrubs are perennial, multi-stemmed woody plants whose adaptation to stress factors allows them to colonise extreme habitats, including high elevations. Accordingly, shrubs are one of the most important growth forms in mountain regions, but their hydraulic properties are poorly understood. We conducted a literature search on the water use strategies of mountain shrubs, focusing on their main hydraulic traits related to water uptake, transport and release, as well as hydraulic limitations in summer and winter.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.
L. is considered a very resilient species to water deficits. Climate change, characterized by warmer summers and drier winters, may challenge even this adaptable species, potentially making once-suitable areas less viable for cultivation.
View Article and Find Full Text PDFAnn Bot
September 2025
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA.
Throughout leaf development, cell expansion is dynamic and driven by the balance between local cell wall mechanical properties and the intracellular turgor pressure that overcomes the stiffness of the cell wall leading to plastic deformation. The epidermal pavement cells in most leaves begin development as small, polygonally shaped cells, but in mature leaves epidermal pavement cells are often shaped as highly lobed puzzle pieces. However, the developmental and biomechanical trajectories between these two end points have not before been fully characterized.
View Article and Find Full Text PDF