98%
921
2 minutes
20
L. is considered a very resilient species to water deficits. Climate change, characterized by warmer summers and drier winters, may challenge even this adaptable species, potentially making once-suitable areas less viable for cultivation. Identifying cultivars with enhanced drought tolerance is essential for the future of olive growing. This study aimed to evaluate the water stress response of four olive cultivars: Biancolilla, Calatina, Nocellara del Belice, and Koroneiki, by analyzing their physiological traits and hydraulic properties. Potted plants were subjected to three irrigation treatments: T20, T50, and T100, corresponding to 20%, 50%, and 100% of crop evapotranspiration over approximately two months. Midday stem water potential and gas exchange were monitored throughout the trial. At the end of the experiment, plants were analyzed using a High-Pressure Flowmeter (HPFM) to measure hydraulic conductance (k) in leaves, shoots, trunks, and roots, providing insights into the plant's hydraulic architecture. On these bases, the study aimed to identify strategies that different cultivars use to handle water stress. Biomass distribution and growth were significantly affected by cultivar and irrigation, with reductions occurring under severe stress, particularly in the shoots and leaves, while root biomass remained relatively stable. The relative stability of the root system and changes in canopy-to-root ratios highlight adaptive responses aimed at maintaining water uptake and ensuring stress resilience. 'Calatina' and 'Nocellara del Belice' showed less sensitivity to irrigation levels, maintaining relatively stable dry matter across all organs and treatments, while 'Biancolilla' and 'Koroneiki' exhibited the opposite. Different relative allocation strategies were evident: 'Calatina' prioritized shoot and leaves biomass and showed dwarfing growth; 'Biancolilla' invested more in trunk development, as well as 'Nocellara del Belice'; 'Koroneiki' focused more resources on roots. Distinct hydraulic strategies emerged among the cultivars: 'Koroneiki' maintained high conductance in aerial parts, supporting sustained photosynthesis and growth; 'Calatina' adopted a conservative approach, prioritizing root conductance and limiting transpiration; while 'Biancolilla' and 'Nocellara del Belice' exhibited intermediate, balanced responses. These findings confirm the strong link between hydraulic architecture and physiological performance, offering insight into cultivar-specific responses to water stress and growth potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399979 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1630454 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFAnaesthesiologie
September 2025
Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
Sodium-glucose Cotransporter 2 (SGLT-2) inhibitors are oral antidiabetic drugs that were developed for the treatment of patients with diabetes mellitus and are now also approved for treating chronic heart failure and chronic kidney disease. By inhibiting SGLT‑2 in the proximal renal tubule, urinary excretion of glucose is increased. Large randomized trials have demonstrated improved glycemic control, reduced cardiovascular events and lower mortality but also an increased risk of urogenital infections and dehydration.
View Article and Find Full Text PDFOrg Lett
September 2025
Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
We report Lewis acid-catalyzed direct conversion of carboxylic acids into primary amides and nitriles using bis(trimethylsilyl)amine as an ammonia surrogate. With 1.1 equiv of bis(trimethylsilyl)amine, ytterbium(III) and hafnium(IV) triflates efficiently catalyzed the reaction, affording various primary amides in high yields with a broad substrate scope.
View Article and Find Full Text PDFEnviron Pollut
September 2025
ECOSPHERE, Department of Biology, University of Antwerp, Belgium.
PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.
View Article and Find Full Text PDFJ Breath Res
September 2025
Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.
Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.
View Article and Find Full Text PDF