Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user's needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356287PMC
http://dx.doi.org/10.3390/mi10010061DOI Listing

Publication Analysis

Top Keywords

neural probes
12
coating material
8
highly flexible
8
flexible polymer-based
8
dextran coating
8
dextran
5
coating
5
dextran resorbable
4
resorbable coating
4
material flexible
4

Similar Publications

Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF

Magnetic Implantable Devices and Materials for the Brain.

Small Methods

September 2025

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.

Understanding the brain's complexity and developing treatments for its disorders necessitates advanced neural technologies. Magnetic fields can deeply penetrate biological tissues-including bone and air-without significant attenuation, offering a compelling approach for wireless, bidirectional neural interfacing. This review explores the rapidly advancing field of magnetic implantable devices and materials designed for modulation and sensing of the brain.

View Article and Find Full Text PDF

A deep learning-based approach for measuring patellar cartilage deformations from knee MR images.

J Biomech

August 2025

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering & Materials Science, Pratt School of Engineering, Duke University, Durham,

While knee osteoarthritis (OA) is a leading cause of disability in the United States, OA within the patellofemoral joint is understudied compared to the tibiofemoral joint. Mechanical alterations to cartilage may be among the first changes indicative of early OA. MR-based protocols have probed patellar cartilage mechanical function by measuring deformations in response to exercise.

View Article and Find Full Text PDF