98%
921
2 minutes
20
Huntington's disease (HD) is a hereditary neurodegenerative disease of the central nervous system (CNS). Onset of HD occurs between the ages of 30 and 50 years, although few cases are reported among children and elderly. HD appears to be less common in some populations such as those of Japanese, Chinese, and African descent. Clinical features of HD include motor dysfunction (involuntary movements of the face and body, abnormalities in gait, posture and balance), cognitive impairment (obsessive-compulsive disorder), and psychiatric disorders (dementia). Mutation in either of the two copies of a gene called huntingtin (HTT), which codes genetic information for a protein called "huntingtin (Htt)", precipitates the disease in an individual. Expansion of cytosine-adenine-guanine (CAG) triplet repeats in the HTT gene results in an abnormal Htt protein. Intracellular neuronal accumulation of the mutated Htt protein (mHtt) causes distinctive erratic movements associated with HD. Further, excessive accumulation of the HTT gene repeats causes abnormal production of reactive oxygen species (ROS) and the ensuing mitochondrial (MT) oxidative stress in neurons. Since there is neither a cure nor a promising strategy to delay onset or progression of HD currently available, therapeutics are mainly focusing only on symptomatic management. Several studies have shown that MT dysfunction-mediated oxidative stress is a key factor for the neurodegeneration observed in HD. Supplementation of antioxidants and nutraceuticals has been widely studied in the management of oxidative damage, an associated complication in HD. Therefore, various antioxidants are used as therapeutics for managing and/or treating HD. The present review aimed at delving into the abnormal cellular changes and energy kinetics of the neurons expressing the mHtt gene and the therapeutic roles of antioxidants in HD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-018-9989-9 | DOI Listing |
J Neuropsychiatry Clin Neurosci
September 2025
Department of Psychiatry, University of Illinois Chicago, Chicago.
Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.
View Article and Find Full Text PDFTrends Biochem Sci
September 2025
Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA. Electronic address:
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, resulting in an expanded polyglutamine (polyQ) tract in HTT protein. Expanded polyQ tracts cause mutant HTT (mHTT) to aggregate and accumulate as cellular inclusions. Recent studies highlight the interactions between mHTT and different cellular membranes that contribute to HD pathogenesis.
View Article and Find Full Text PDFEur J Gastroenterol Hepatol
September 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital.
Aim: The purpose of our study was to evaluate the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its associated risk factors in patients with inflammatory bowel disease (IBD).
Methods: This was a retrospective chart review of patients who underwent treatment for IBD at Jordan University Hospital between January 2013 and 2022. Case finding methods and clinical chart reviews were used to evaluate the clinical profile of patients with IBD.
PLoS One
September 2025
Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria.
Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).
View Article and Find Full Text PDF