Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. Sensitization of wild-type (WT) mice induces hapten-reactive effector CD8 T cells producing IFN-γ and IL-17- and IL-4-producing CD4 T cells that cannot mediate CHS. Although CXCR2-dependent Ly6G (neutrophil) cell recruitment into hapten-challenged skin is required to direct effector CD8 T cell infiltration into the challenge site to elicit CHS, 2,4-dinitrofluorobenezene (DNFB) sensitization of CXCR2 mice and neutrophil-depleted WT mice induced both hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17. CD4 T cell-mediated CHS responses were not generated during DNFB sensitization of neutrophil-depleted WT mice treated with anti-IL-12 mAb or neutrophil-depleted IL-12 mice. Neutrophil depletion during DNFB sensitization of WT mice markedly increased IL-12-producing hapten-primed dendritic cell numbers in the skin-draining lymph nodes. Sensitization of mice lacking the neutrophil serine protease cathepsin G (CG)-induced hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17 with elevated and elongated CHS responses to DNFB challenge. Induction of CHS effector CD4 T cells producing IFN-γ in neutrophil-depleted WT mice was eliminated by s.c. injection of active, but not inactivated, CG during sensitization. Thus, hapten skin sensitization induces neutrophil release of CG that systemically inhibits hapten-presenting dendritic cell production of IL-12 and the development of hapten-reactive CD4 T cells to IFN-γ-producing CHS effector cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363895PMC
http://dx.doi.org/10.4049/jimmunol.1800841DOI Listing

Publication Analysis

Top Keywords

cells producing
16
producing ifn-γ
16
dendritic cell
12
cd8 cells
12
cd4 cells
12
dnfb sensitization
12
neutrophil-depleted mice
12
hapten-reactive cd4
12
cell production
8
production il-12
8

Similar Publications

Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).

View Article and Find Full Text PDF

NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Metabolic interplay of SCFA's in the gut and oral microbiome: a link to health and disease.

Front Oral Health

August 2025

Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.

Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.

View Article and Find Full Text PDF

Deviance detection and regularity sensitivity in dissociated neuronal cultures.

Front Neural Circuits

September 2025

Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.

Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.

View Article and Find Full Text PDF