Publications by authors named "Nina Dvorina"

Acute and chronic antibody mediated rejection (ABMR) continues to decrease clinical kidney graft function and survival. Dysregulated donor-specific antibody (DSA) responses are induced in B6.CCR5 recipients of complete MHC-mismatched A/J kidney allografts with NK cells playing a critical role in the acute ABMR.

View Article and Find Full Text PDF

Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with autosomal dominant polycystic kidney disease (ADPKD) exhibit complement activation, but its role in kidney cyst growth was previously unclear.
  • Research using a specific cell line and genetically modified mice showed that lack of the Pkd1 gene leads to increased complement-related genes and faster cyst formation, while its absence delayed cyst growth and reduced inflammation.
  • The study suggests that the downregulation of complement regulators due to Pkd1 loss enhances cystogenesis through C5a activation, indicating a potential new target for therapeutic interventions in ADPKD.
View Article and Find Full Text PDF

Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation.

View Article and Find Full Text PDF

Purpose: Epithelial ovarian carcinoma (EOC) is the most lethal of all human gynecologic malignancies. We previously reported that vaccination of female mice with the extracellular domain of anti-Müllerian hormone receptor II (AMHR2-ED) in complete Freund's adjuvant (CFA) generates AMHR2-ED specific immunoglobulin G (IgG) that provides prevention and therapy against murine EOCs. Although CFA is the "gold standard" adjuvant in animal studies, it is not approved for human use because it often induces painful granulomas and abscesses.

View Article and Find Full Text PDF

Cardiac allograft vasculopathy (CAV) limits the long-term success of heart transplants. Generation of donor-specific antibodies (DSAs) is associated with increased incidence of CAV clinically, but mechanisms underlying development of this pathology remain poorly understood. Major histocompatibility complex-mismatched A/J cardiac allografts in B6.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by dysregulated T and B lymphocytes. Type I interferons (IFN-I) have been shown to play important pathogenic roles in both SLE patients and mouse models of lupus. Recent studies have shown that B cell intrinsic responses to IFN-I are enough to drive B cell differentiation into autoantibody-secreting memory B cells and plasma cells, although lower levels of residual auto-reactive cells remain present.

View Article and Find Full Text PDF

Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disorder disproportionally affecting women. A similar sex difference exists in the murine New Zealand Black/White hybrid model (NZBWF1) of SLE with all females, but only 30-40% of males, developing disease within the first year of life. Myeloid-derived suppressor cells (MDSCs) are prominent in NZBWF1 males and while depletion of these cells in males, but not females, promotes disease development, the mechanism of suppression remains unknown.

View Article and Find Full Text PDF

Antibody-mediated rejection (ABMR) continues to be a major problem undermining the success of kidney transplantation. Acute ABMR of kidney grafts is characterized by neutrophil and monocyte margination in the tubular capillaries and by graft transcripts indicating NK cell activation, but the myeloid cell mechanisms required for acute ABMR have remained unclear. Dysregulated donor-specific antibody (DSA) responses with high antibody titers are induced in B6.

View Article and Find Full Text PDF

We investigated the function of the newly discovered myosin family protein myosin 18A (Myo18A) in Ab-mediated immunity by generating B cell-conditional Myo18A-deficient mice. Myo18A deficiency led to expansion of bone marrow progenitor B cells and mature B cells in secondary lymphoid organs. Myo18A-deficient mice displayed serum IgM hyperglobulinemia and increased splenic IgM-secreting cells, with older mice switching to IgG1 hyperglobulinemia and autoantibody development.

View Article and Find Full Text PDF

Retiform purpura has been described as a relatively frequent cutaneous finding in patients with coronavirus disease 2019 (COVID-19). The etiology is hypothesized to be related to thrombotic vasculopathy based on lesional biopsy specimen findings, but the pathogenesis of the vasculopathy is not completely understood. Here, we present a case of a retiform purpuric patch on the sacrum/buttocks in a hospitalized patient prior to subsequent diagnosis of COVID-19 and an eventual fatal disease course.

View Article and Find Full Text PDF

Allogeneic transplants elicit dynamic T cell responses that are modulated by positive and negative co-stimulatory receptors. Understanding mechanisms that intrinsically modulate the immune responses to transplants is vital to develop rational treatment for rejection. Here, we have investigated the impact of programed cell death-1 (PD-1) protein, a negative co-stimulatory receptor, on the rejection of MHC incompatible kidney transplants in mice.

View Article and Find Full Text PDF

Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3 regulatory T (Treg) cells are irreplaceable GC target cells in vivo.

View Article and Find Full Text PDF

Previously, we identified a mechanism of inflammation control directed by ribosomal protein L13a and "GAIT" (Gamma Activated Inhibitor of Translation) elements in target mRNAs and showed that its elimination in myeloid cell-specific L13a knockout mice (L13a KO) increased atherosclerosis susceptibility and severity. Here, we investigated the mechanistic basis of this endogenous defense against atherosclerosis. We compared molecular and cellular aspects of atherosclerosis in high-fat diet (HFD)-fed L13a KO and intact (control) mice.

View Article and Find Full Text PDF

Foxp3+ CD4 Tregs are central regulators of inflammation, including allergic inflammation in the lung. There is increasing evidence that inflammatory factors undermine adequate Treg functions and homeostasis, resulting in prolonged and exacerbated inflammation. Therefore, identifying the factors is of the utmost important.

View Article and Find Full Text PDF

Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. Sensitization of wild-type (WT) mice induces hapten-reactive effector CD8 T cells producing IFN-γ and IL-17- and IL-4-producing CD4 T cells that cannot mediate CHS. Although CXCR2-dependent Ly6G (neutrophil) cell recruitment into hapten-challenged skin is required to direct effector CD8 T cell infiltration into the challenge site to elicit CHS, 2,4-dinitrofluorobenezene (DNFB) sensitization of CXCR2 mice and neutrophil-depleted WT mice induced both hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17.

View Article and Find Full Text PDF

Antibody mediated rejection (ABMR) is a major barrier to long-term kidney graft survival. Dysregulated donor-specific antibody (DSA) responses are induced in CCR5-deficient mice transplanted with complete major histocompatibility complex (MHC)-mismatched kidney allografts, and natural killer (NK) cells play a critical role in graft injury and rejection. We investigated the consequence of high DSA titers on kidney graft outcomes in the presence or absence of NK cell activation within the graft.

View Article and Find Full Text PDF
Article Synopsis
  • Endogenous memory CD8 T cells that target donor class I MHC molecules infiltrate cardiac allografts quickly after transplantation, leading to graft injury through their effector functions.
  • The study examined the use of Very Late Antigen-4 (VLA-4) blockade to prevent these T cells from entering allografts and reduce early inflammation, showing a significant decrease in the infiltration of memory T cells and macrophages in the treated recipients.
  • Results indicated that anti-VLA-4 therapy not only reduced early graft inflammation but also prolonged the survival of cardiac allografts under different conditions, highlighting a potential strategy to manage immune responses in high-risk transplant situations.
View Article and Find Full Text PDF

Objective: CD6 is emerging as a new target for treating many pathological conditions in which T cells are integrally involved, but even the latest data from studies of CD6 gene engineered mice were still contradictory. To address this issue, we studied experimental autoimmune uveitis (EAU), a model of autoimmune uveitis, in wild-type (WT) and CD6 knockout (KO) mice.

Methods: After EAU induction in WT and CD6 KO mice, we evaluated ocular inflammation and compared retinal antigen-specific T-cell responses using scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, histopathology, and T cell recall assays.

View Article and Find Full Text PDF

Understanding functions of Foxp3 regulatory T cells (Tregs) during allergic airway inflammation remains incomplete. In this study, we report that, during cockroach Ag-induced allergic airway inflammation, Foxp3 Tregs are rapidly mobilized into the inflamed lung tissues. However, the level of Treg accumulation in the lung was different depending on the type of inflammation.

View Article and Find Full Text PDF

Epithelial ovarian carcinoma (EOC) is the most prevalent form of ovarian cancer in the United States, representing approximately 85% of all cases and causing more deaths than any other gynecologic malignancy. We propose that optimized control of EOC requires the incorporation of a vaccine capable of inducing safe and effective preemptive immunity in cancer-free women. In addition, we hypothesize that ovarian-specific self-proteins that are "retired" from autoimmune-inducing expression levels as ovaries age but are expressed at high levels in emerging EOC may serve as vaccine targets for mediating safe and effective primary immunoprevention.

View Article and Find Full Text PDF

Dysregulated Foxp3 Treg functions result in uncontrolled immune activation and autoimmunity. Therefore, identifying cellular factors modulating Treg functions is an area of great importance. Here, using Treg-specific mice, we report that IL-27 signaling in Foxp3 Tregs is essential for Tregs to control autoimmune inflammation in the central nervous system (CNS).

View Article and Find Full Text PDF

Adiponectin is a pleiotropic cytokine with diverse immunomodulatory effects on macrophages and lymphocytes. In the current paradigm, lymphocytes and macrophages respond to adiponectin that is produced by adipocytes and other parenchymal cells. Using a model of chronic arterial inflammation in cardiac transplants, we found that T cells derived from the recipient migrate to the heart and produce adiponectin locally.

View Article and Find Full Text PDF

Altered bone morphogenic protein (BMP) signaling, independent of BMPR2 mutations, can result in idiopathic pulmonary arterial hypertension (IPAH). Glucose dysregulation can regulate multiple processes in IPAH. However, the role of glucose in BMP antagonist expression in IPAH has not been characterized.

View Article and Find Full Text PDF