Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel method for the chemo-enzymatic synthesis of chitin oligosaccharide catalyzed by mutants of BcChi-A, an inverting family GH19 chitinase from Bryum coronatum, has been developed using 4,6-dimethoxy-1,3,5-triazin-2-yl α-chitobioside [DMT-α-(GlcNAc)2)] as a donor substrate. Based on the glycosynthase derived from BcChi-A, Glu70, which acts as a catalytic base, and Ser102, which fixes a nucleophilic water molecule, were changed to generate several single and double mutants of BcChi-A, which were employed in synthetic reactions. Among the double mutants tested, E70G/S102G, E70G/S102C and E70G/S102A were found to successfully synthesize chitotetraose [(GlcNAc)4] from DMT-α-(GlcNAc)2 and (GlcNAc)2; however, the single mutants, E70G, S102G, S102C and S102A, did not. Among the mutants, E70G/S102A showed the highest synthetic activity. This is the first report of a glycosynthase that employs a dimethoxytriazine-type glycoside as a donor substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvy123DOI Listing

Publication Analysis

Top Keywords

novel method
8
method chemo-enzymatic
8
chemo-enzymatic synthesis
8
synthesis chitin
8
chitin oligosaccharide
8
oligosaccharide catalyzed
8
inverting family
8
family gh19
8
gh19 chitinase
8
46-dimethoxy-135-triazin-2-yl α-chitobioside
8

Similar Publications

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) risk models routinely adjust for endoscopic screening because of a) possible confounding with other risk factors and b) possible alteration of natural history of the disease due to adenoma detection and removal.

Methods: In this study, we defined a subject as screen-covered (SC) if a colonoscopy was performed in the past 10 years, and not screen-covered (NSC) otherwise. We created CRC risk models separately for SC and NSC subjects (HRSC, HRNSC) and then obtained a screening-coverage adjusted HR estimate (HRfull) based on a weighted average of ln(HRSC) and ln(HRNSC) with weight equal to the proportion of SC person-time in the NHS population.

View Article and Find Full Text PDF

Microbial cell-free DNA for diagnosis of bacterial and fungal infection in the immunocompromised host - what do we know?

Curr Opin Infect Dis

August 2025

Transplant and Immunocompromised Host Infectious Diseases, Department of Medicine, Infectious Diseases Division, Massachusetts General Hospital.

Purpose Of Review: Plasma metagenomic next-generation sequencing (mNGS) enables detection of microbial cell-free deoxyribonucleic acid (mcfDNA) in blood without the need for culture or organism-specific primers. Here, we review clinical performance, methodological variability, and real-world application of plasma mNGS for infectious disease diagnosis in immunocompromised hosts (ICHs).

Recent Findings: Plasma mNGS has rapidly gained attention as a novel diagnostic tool for infections in ICHs, offering broad-range pathogen detection from a noninvasive blood sample.

View Article and Find Full Text PDF

Introduction: Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) requires reliable vascular access for medication, transfusion, and blood sampling, which often involves painful venipuncture. This prospective study evaluated a novel dual peripherally inserted central venous catheter (PICC) technique to reduce venipuncture frequency in allo-HSCT recipients.

Methods: The study enrolled 29 allo-HSCT recipients.

View Article and Find Full Text PDF