A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In situ simulation of thin-layer dredging effects on sediment metal release across the sediment-water interface. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dredging is widely applied to remediate contaminated sediments in aquatic ecosystems. However, the efficiency of thin-layer dredging for metal pollution control remains uncertain and even controversial. This study conducted an in-situ simulation experiment in Lake Taihu to investigate dredging effects on sediment metal release based on metal fractions, diffusion flux and kinetics parameters of metal resupply, using diffusive gradient in thin films (DGT), multi-microelectrode, and European Community Bureau of Reference (BCR) sequential extraction scheme. Results indicated that the exchange fluxes of metals did not necessarily correspond to total sediment metal concentrations or the contents of different sequentially-extracted metal fractions; there were appreciable decreases in Ni, Cd, Cu and Zn in terms of total sediment metal concentrations and metal fractions, whereas the bioavailability and release fluxes of labile Ni, Cu and Zn (but not Cd) were all notably promoted (by 136, 128 and 149%, respectively) in dredged area compared to those in un-dredged sediments. Further analysis on the kinetics of metal resupply by DGT technique and DGT-induced fluxes in sediments model (DIFS) showed higher concentrations of labile metals, with a larger resupply ability from sediments after dredging. Therefore, thin-layer dredging had the possibility to increase metal release from sediments to the water column. This was attributed to the remobilization of metal sulfides in anoxic deep sediments, as oxidation increased after dredging due to the introduction of oxygenated water, causing subsequent dissolution of sulfide-bound metals. In conclusion, dredging may not mitigate metal contamination, although it can reduce the total pollution load. Our findings indicated dual effects of dredging and provided new insights into the remobilization mechanism of metal release induced by dredging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.226DOI Listing

Publication Analysis

Top Keywords

sediment metal
16
metal release
16
metal
14
thin-layer dredging
12
metal fractions
12
dredging
10
dredging effects
8
effects sediment
8
metal resupply
8
total sediment
8

Similar Publications