98%
921
2 minutes
20
Classification of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T-ALL patients were characterized by genome-wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2-1, and novel genes in T-ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP- subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL-TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP-), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T-ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346238 | PMC |
http://dx.doi.org/10.1002/cam4.1917 | DOI Listing |
Leukemia
September 2025
Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.
View Article and Find Full Text PDFLeukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFTransplant Cell Ther
September 2025
Department of Pediatrics, University of Arizona, Tucson, AZ, USA; Banner University Medical Center, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA;
Background: Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for pediatric patients with hematologic malignancies. Human leukocyte antigen (HLA)-matched sibling donors (MSDs) are considered the optimal source for stem cell transplantation; however, up to 70% of patients lack an MSD. This disparity is particularly pronounced among racial and ethnic minorities, who face challenges in identifying matched unrelated donors (MUDs).
View Article and Find Full Text PDFCurr Med Sci
September 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.
Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.
Eur J Case Rep Intern Med
August 2025
Division of Hematology and Oncology, UNM Comprehensive Cancer Center, Albuquerque, USA.
Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.
View Article and Find Full Text PDF