Atg2, Atg9 and Atg18 in mitochondrial integrity, cardiac function and healthspan in Drosophila.

J Mol Cell Cardiol

Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, United

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In yeast, the Atg2-Atg18 complex regulates Atg9 recycling from phagophore assembly site during autophagy; their function in higher eukaryotes remains largely unknown. In a targeted screening in Drosophila melanogaster, we show that Mef2-GAL4-RNAi-mediated knockdown of Atg2, Atg9 or Atg18 in the heart and indirect flight muscles led to shortened healthspan (declined locomotive function) and lifespan. These flies displayed an accelerated age-dependent loss of cardiac function along with cardiac hypertrophy (increased heart tube wall thickness) and structural abnormality (distortion of the lumen surface). Using the Mef2-GAL4-MitoTimer mitochondrial reporter system and transmission electron microscopy, we observed significant elongation of mitochondria and reduced number of lysosome-targeted autophagosomes containing mitochondria in the heart tube but exaggerated mitochondrial fragmentation and reduced mitochondrial density in indirect flight muscles. These findings provide the first direct evidence of the importance of Atg2-Atg18/Atg9 autophagy complex in the maintenance of mitochondrial integrity and, regulation of heart and muscle functions in Drosophila, raising the possibility of augmenting Atg2-Atg18/Atg9 activity in promoting mitochondrial health and, muscle and heart function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533900PMC
http://dx.doi.org/10.1016/j.yjmcc.2018.12.006DOI Listing

Publication Analysis

Top Keywords

atg2 atg9
8
atg9 atg18
8
mitochondrial integrity
8
cardiac function
8
indirect flight
8
flight muscles
8
heart tube
8
mitochondrial
6
function
5
heart
5

Similar Publications

As a highly conserved cellular process, autophagy has been the focus of extensive research due to its critical role in maintaining cellular homeostasis and its implications in cardiovascular pathogenesis. The decline in muscular function, along with the neuronal system, and increased sensitivity to stress have been recognized in multiple animal models. Autophagic defects in cardiovascular architecture and cellular dysfunction have been linked to both physiological and pathological conditions of the heart in mammals and .

View Article and Find Full Text PDF

Mechanisms of autophagosome formation.

Proc Jpn Acad Ser B Phys Biol Sci

January 2025

Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum.

View Article and Find Full Text PDF

Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein.

View Article and Find Full Text PDF

Phospholipid Supply for Autophagosome Biogenesis.

J Mol Biol

August 2024

Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel. Electronic address:

Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied.

View Article and Find Full Text PDF

AMPK regulates phagophore-to-autophagosome maturation.

J Cell Biol

August 2024

Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation.

View Article and Find Full Text PDF