98%
921
2 minutes
20
Background/aims: Increasing evidence suggests the important role of sirtuin 2 (SIRT2) in the pathology of Parkinson's disease (PD). However, the association between potential functional polymorphisms in the SIRT2 gene and PD still needs to be identified. Exploring the molecular mechanism underlying this potential association could also provide novel insights into the pathogenesis of this disorder.
Methods: Bioinformatics analysis and screening were first performed to find potential microRNAs (miRNAs) that could target the SIRT2 gene, and molecular biology experiments were carried out to further identify the regulation between miRNA and SIRT2 and characterize the pivotal role of miRNA in PD models. Moreover, a clinical case-control study was performed with 304 PD patients and 312 healthy controls from the Chinese Han population to identify the possible association of single nucleotide polymorphisms (SNPs) within the miRNA binding sites of SIRT2 with the risk of PD.
Results: Here, we demonstrate that miR-486-3p binds to the 3' UTR of SIRT2 and influences the translation of SIRT2. MiR-486-3p mimics can decrease the level of SIRT2 and reduce a-synuclein (α-syn)-induced aggregation and toxicity, which may contribute to the progression of PD. Interestingly, we find that a SNP, rs2241703, may disrupt miR-486-3p binding sites in the 3' UTR of SIRT2, subsequently influencing the translation of SIRT2. Through the clinical case-control study, we further verify that rs2241703 is associated with PD risk in the Chinese Han population.
Conclusion: The present study confirms that the rs2241703 polymorphism in the SIRT2 gene is associated with PD in the Chinese Han population, provides the potential mechanism of the susceptibility locus in determining PD risk and reveals a potential target of miRNA for the treatment and prevention of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000495963 | DOI Listing |
Stem Cell Res
September 2025
Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China. Electronic address:
PHD finger protein 19 (PHF19) is a polycomb protein that promoted cardiac hypertrophy via epigenetic targeting SIRT2. To determine the role of PHF19 in myocardial hypertrophy, we established a large fragment knockout model of PHF19 gene in human embryonic stem cells (hESCs-H7) using the CRISPR/Cas9 system based on a vector. This PHF19-KO cell line has a normal karyotype, classical human pluripotent stem cell morphology, strong pluripotency, and significantly reduced PHF19 gene expression, which will become a useful tool for further in-depth research on the pathogenesis of PHF19 gene deficiency induced myocardial hypertrophy.
View Article and Find Full Text PDFJ Ethnopharmacol
August 2025
Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Collaborative Innovation Center of Prevention and Treatment of Major Diseases By Chinese and Western Medicine, Henan Province, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine,
Ethnopharmacological Relevance: Huanshaodan (HSD) is a Traditional Chinese Medicine Compound Prescription, traditionally used in the clinical treatment of Alzheimer's disease (AD) in China. Nevertheless, its bioactive constituents and mechanistic basis remain poorly understood.
Aim Of The Study: To identify the components derived from HSD that inhibit SIRT2 and investigate the underlying mechanisms in mitigating AD pathogenesis.
Comput Biol Med
August 2025
Department of Surgical and Interventional Sciences, McGill University, Montreal, Canada; Department of Physics (Alumni), Concordia University, Montreal, Canada; Department of Psychology (Alumni), Concordia University, Montreal, Canada; Oxford Immune Algorithmics, Reading, UK. Electronic address: a_u
Advancements in AI-powered systems medicine have revolutionized biomarker discovery through emergent and explainable features. By use of complex network dynamics and graph-based machine learning, we identified critical determinants of lineage-specific plasticity across the single-cell transcriptomics of pediatric high-grade glioma (pHGGs) subtypes: IDHWT glioblastoma and K27M-altered diffuse midline glioma. Our study identified network interactions regulating glioma morphogenesis via the tumor-immune microenvironment, including neurodevelopmental programs, calcium dynamics, iron metabolism, metabolic reprogramming, and feedback loops between MAPK/ERK and WNT signaling.
View Article and Find Full Text PDFExpert Opin Ther Pat
September 2025
Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India.
Introduction: Tumor cell heterogeneity poses a challenge to monotherapy, as a single drug cannot kill all heterogeneous cancer cells of a tumor. The surviving cells may develop resistance, potentially leading to tumor recurrence. The combination therapy targets the disease through multiple mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
July 2025
Faculty of Medicine, Mazovian University in Plock, 09-240 Plock, Poland.
The prevalence of stroke in patients with migraine is higher than in the general population, suggesting certain shared mechanisms of pathogenesis. Migrainous infarction is a pronounced example of the migraine-stroke connection. Some cases of migraine with aura may be misdiagnosed as stroke, with subsequent mistreatment.
View Article and Find Full Text PDF