98%
921
2 minutes
20
Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15641 | DOI Listing |
Plant Genome
September 2025
Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, Victoria, Australia.
Global wheat (Triticum aestivum L.) production faces significant challenges due to the destructive nature of leaf (Puccinia triticina; leaf rust [Lr]), stem (Puccinia graminis; stem rust [Sr]), and stripe (Puccinia striiformis; stripe rust [Yr]) rust diseases. Despite ongoing efforts to develop resistant varieties, these diseases remain a persistent challenge due to their highly evolving nature.
View Article and Find Full Text PDFMycoKeys
August 2025
Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA Purdue University West Lafayette United States of America.
Rust fungi (Pucciniales) comprise a large group of ecologically and economically important plant pathogens distributed globally where their hosts grow. The first published study of rusts in Indiana was carried out 131 years ago, and a revised checklist of all Pucciniales for Indiana has not been compiled since the works of Jackson from 1917 to 1920. Efforts to compile a checklist five years ago revealed a dire need for revision due to taxonomic and nomenclatural changes.
View Article and Find Full Text PDFFungal Biol
October 2025
Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino La Carrindanga Km 7, Bahía Blanca, 8000, Argentina.
Tritrophic interactions involving host plants, fungal pathogens and mycoparasites play an important role in the dynamics of natural ecosystems. In this work, we investigate the impact of the rust fungus Puccinia araujiae on the growth of Araujia hortorum plants in the presence/absence of a mycoparasitic Cladosporium species identified here as Cladosporium sphaerospermum, supported by both morphological and molecular studies. The capacity of the latter to grow and reproduce at the expense of teliospores of the rust was confirmed through microscopic observations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Life Science Academy, Beijing, 102206, China.
In-field molecular diagnostics of plant pathogens are critical for crop disease management and precision agriculture, but tools are still lacking. Herein, we present a bioluminescent molecular diagnostic assay capable of detecting viable pathogens directly in minimally processed plant samples, enabling rapid and precise in-field crop disease diagnosis. The assay, called bioluminescent craspase diagnostics (BioCrastics), leverages newly discovered RNA-activated protease of CRISPR (Craspase) with enzymatic luminescence to generate a cascaded amplification, thus bypasses nucleic acid purification and amplification while achieving sub-nanogram sensitivity for fungal pathogens.
View Article and Find Full Text PDFPlant Environ Interact
October 2025
Discipline of Plant Pathology, College of Agriculture, Engineering & Science; School of Agricultural, Earth and Environmental Sciences University of KwaZulu-Natal Pietermaritzburg Republic of South Africa.
Asian soybean rust (ASR) is caused by the biotrophic fungus Syd. & P. Syd.
View Article and Find Full Text PDF