[Effects of aerosol inhalation on respiratory mechanical parameters under different ventilation patterns and ventilator parameters].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

Department of Critical Care Medicine, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266071, Shandong, China. Corresponding author: Qu Yan, Email:

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To investigate the effects of aerosol inhalation on respiratory mechanical parameters under different ventilation patterns and ventilator parameters in patients on mechanical ventilation and simulated model of aqualung in vitro.

Methods: (1) Clinical research: the patients needed sedative undergoing mechanical ventilation admitted to intensive care unit (ICU) of Qingdao Municipal Hospital from January 2016 to January 2018 were enrolled. They were randomly divided into volume controlled ventilation (VCV) group and pressure controlled ventilation (PCV) group according to random number table. Main parameters setting of respirator: the predetermined tidal volume (VT) was set at 500 mL in the VCV group; the preset pressure was regulated, so that when the atomizer was connected to the atomization device, the VT was nearly equal to or slightly larger than 500 mL in the PCV group. Respiratory mechanical indices [peak airway pressure (Ppeak), inspiratory tidal volume (VTi), exhaled tidal volume (VTe)] were recorded before atomization (atomized oxygen flow was 0) and 10 minutes after the beginning of atomization under the condition of 7 L/min and 9 L/min of atomized oxygen flow respectively. (2) Simulated scuba test in vitro: the ventilator was connected to the simulated scuba, and an external mechanical ventilation model was constructed. They were divided into VCV group and PCV group according to ventilation mode. Main parameters setting of respirator: VCV group was given 450, 550, 650 mL preset VT, and PCV group was given 12, 16, 20 cmHO (1 cmHO = 0.098 kPa) preset suction pressure. The changes in respiratory mechanical indexes were observed under different ventilation patterns and ventilator parameters of 0 (only connected with atomizing device), 5, 7, 9 L/min atomizing oxygen flow.

Results: (1) Clinical research results: all 77 patients were enrolled in the final analysis, including 20 patients with 7 L/min of atomized oxygen flow under VCV mode, 18 patients with 9 L/min of atomized oxygen flow, and 21 patients with 7 L/min of atomized oxygen flow under PCV mode and 18 patients with 9 L/min of atomized oxygen flow. Under VCV mode, the levels of Ppeak and VTe were increased with the increase in atomized oxygen flow, and there was significant difference at 9 L/min as compared with those before atomization [Ppeak (cmHO): 29.44±4.58 vs. 24.39±4.64, VTe (mL): 896.26±24.91 vs. 497.61±8.67, both P < 0.05]. There was no significant change in VTi, and no significant difference at 9 L/min of atomized oxygen flow as compared with that before atomization (mL: 494.67±3.07 vs. 492.61±6.05, P > 0.05). Under PCV mode, with the increase in oxygen atomization flow, VTi was decreased gradually, and VTe was increased gradually, with significant difference as compared with those before atomization when the atomized oxygen flow was 9 L/min [VTi (mL): 322.78±17.75 vs. 518.17±8.97, VTe (mL): 730.89±31.20 vs. 519.00±9.06, both P < 0.05]. There was no significant change in Ppeak, and no significant difference at 9 L/min of atomized oxygen flow as compared with that before atomization (cmHO: 21.44±2.23 vs. 21.39±2.55, P > 0.05). (2) Simulated scuba results in vitro: under VCV mode, VTe monitored by respirator and VT showed by simulated scuba in different preset VT groups were continuously increased with the increase in oxygen atomization flow, while VTi monitored by ventilator was not significantly changed. At 10 minutes after the beginning of atomization, the VTi monitored by ventilator in different preset VT groups was significantly lower than VT showed by simulated water lung (mL: 649.67±5.03 vs. 840.00±10.00 at 650 mL of preset VT and 9 L/min of atomized oxygen flow, P < 0.05), and VTe was significantly higher than VT showed by simulated water lung (mL: 1 270.33±11.06 vs. 840.00±10.00 at 650 mL of preset VT and 9 L/min of atomized oxygen flow, P < 0.05). Under PCV mode, with the increase in atomized oxygen flow, VTi monitored by ventilator in different preset suction pressure groups was decreased gradually, and VTe was increased gradually, but Ppeak monitored by ventilator did not changed significantly. At 10 minutes after the beginning of atomization, the VTi monitored by ventilator in different preset suction pressure groups was significantly lower than VT showed by simulated water lung (mL: 917.33±4.51 vs. 1 103.33±5.77 at 20 cmHO of preset suction pressure and 9 L/min of atomized oxygen flow, P < 0.05), and VTe was significantly higher than VT showed by simulated water lung (mL: 1 433.33±4.73 vs. 1 103.33±5.77 at 20 cmHO of preset suction pressure and 9 L/min of atomized oxygen flow, P < 0.05).

Conclusions: Under the VCV mode, the oxygen flow outside the atomization could lead to the increase in VT of the patient side, while under the PCV mode, the VT and Ppeak in the patient side had no significant change. Both VTi and VTe monitored by ventilator could not reflect the patient's VT under either VCV or PCV mode.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2018.011.005DOI Listing

Publication Analysis

Top Keywords

oxygen flow
64
atomized oxygen
60
l/min atomized
44
monitored ventilator
24
preset suction
20
suction pressure
20
pcv mode
20
oxygen
19
flow
18
respiratory mechanical
16

Similar Publications

Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.

View Article and Find Full Text PDF

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

Purpose: There is limited evidence to guide the use of enteral nutrition (EN) for children with bronchiolitis who received Humidified high flow nasal cannula (HHFNC) and often kept nil per mouth for aspiration and progression to mechanical ventilation risk.

Methods: This quality improvement project included children with bronchiolitis who were supported by HHFNC in the paediatric intensive care unit (PICU). An algorithm to increase EN use in those participants was created by stakeholders.

View Article and Find Full Text PDF

Breast cancer is one of the most lethal cancers in women worldwide. Tamoxifen (TAM), a nonsteroidal antiestrogen, is a highly successful treatment for breast cancer. However, developed resistance to TAM can substantially impair chemotherapy efficacy, resulting in poor prognosis and cancer recurrence.

View Article and Find Full Text PDF

Impact of ventilation sufficiency in prognosis of high-flow treated hypoxemic respiratory failure: A retrospective study.

Medicine (Baltimore)

September 2025

Department of Chest Diseases, Health Ministry of the Turkish Republic, Bursa City Hospital, Bursa, Türkiye.

Using high-flow nasal cannula (HFNC) in patients with hypoxemic respiratory failure to avoid intubation raises concerns about its potential to increase mortality due to delayed intubation. Identifying at-risk patients is essential. While the literature predicts risk with oxygen-based indices (ROX, SpO2/FiO2, PaO2/FiO2), we aimed to detect ventilation insufficiency.

View Article and Find Full Text PDF