Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports.

J Environ Sci (China)

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rod-like, hexagonal and fiber-like SBA-15 mesoporous silicas were synthesized to support MnO for toluene oxidation. This study showed that the morphology of the supports greatly influenced the catalytic activity in toluene oxidation. MnO supported on rod-like SBA-15 (R-SBA-15) displayed the best catalytic activity and the conversion at 230°C reached more than 90%, which was higher than the other two catalysts. MnO species consisted of coexisting MnO and MnO on the three kinds of SBA-15 samples. Large amounts of MnO species were formed on the surface and high oxygen mobility was obtained on MnO supported on R-SBA-15, according to the H temperature programmed reduction (H-TPR) and X-ray photoelectron spectroscopy (XPS) results. The Mn/R-SBA-15 catalyst with greater amounts of MnO species possessed a large amount of surface lattice oxygen, which accelerated the catalytic reaction rate. Therefore, the surface lattice oxygen and high oxygen mobility were critical factors on the catalytic activity of the Mn/R-SBA-15 catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2018.04.027DOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
mno species
12
morphology supports
8
mno
8
toluene oxidation
8
mno supported
8
amounts mno
8
high oxygen
8
oxygen mobility
8
mn/r-sba-15 catalyst
8

Similar Publications

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

Precise Modulation of Zeolite Acidity by Alkali Metal Ions for Enhancing Catalytic Performance in CO Cycloaddition Reactions.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.

The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.

View Article and Find Full Text PDF

Catalytic Asymmetric (-)-Carbonyl-Ene Type Cyclizations.

J Am Chem Soc

September 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

The carbonyl-ene reaction between aldehydes and olefins constitutes a perfectly atom economic approach to homoallylic alcohols with concomitant C-C bond formation. However, the scope of catalytic asymmetric intermolecular versions is currently limited to activated substrates, while of the two intramolecular types only catalytic asymmetric (-)-carbonyl-ene type cyclizations can be considered mature. The corresponding (-)-cyclizations would arguably find equal utility in chemical synthesis but remain underdeveloped.

View Article and Find Full Text PDF

Regioselective Dual Gold/Silver-Catalyzed C3-H Alkynylation of Triazolopyridazines.

Org Lett

September 2025

Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.

A regioselective C3-H alkynylation of triazolopyridazines has been achieved via dual gold/silver catalysis employing hypervalent iodine(III) reagents. The transformation proceeds through an alkynyl Au(III) intermediate and a silver-assisted C-H activation pathway, delivering a broad range of 3-alkynylated triazolopyridazines in good to excellent yields. Mechanistic studies, including H/D exchange experiments, reveal that the silver species plays a crucial role in facilitating C-H activation.

View Article and Find Full Text PDF