98%
921
2 minutes
20
Ecological niches reflect not only adaptation to local circumstances but also the tendency of related lineages to share environmental tolerances. As a result, information on phylogenetic relationships has underappreciated potential to inform ecological niche modeling. Here we review three strategies for incorporating evolutionary information into niche models: splitting lineages into subunits, lumping across lineages, and partial pooling of lineages into a common statistical framework that implicitly or explicitly accounts for evolutionary relationships. We challenge the default practice of modeling at the species level, which ignores the process of niche evolution and erroneously assumes that the species is always the appropriate level for niche estimation. Progress in the field requires reexamination of how we assess models of niches versus models of distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2018.10.012 | DOI Listing |
Mol Ecol
September 2025
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Determining species boundaries is key for appropriately assessing biodiversity. However, the continuity of the speciation process makes delimiting species a difficult task, especially for recently diverged taxa. Furthermore, past introgression may leave traces that result in reticulate evolutionary patterns, challenging the estimation of species relationships.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China.
Objectives: To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.
Methods: Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model.
Mol Ecol Resour
September 2025
Department of Biology, University of Florence, Sesto Fiorentino, Italy.
Quaternary climatic fluctuations had a substantial influence on ecosystems, species distribution, phenology and genetic diversity, driving extinction, adaptation and demographic shifts during glacial periods and postglacial expansions. Integration of genomic data and environmental niche modelling can provide valuable insights on how organisms responded to past environmental variations and contribute to assessing vulnerability and resilience to ongoing climatic challenges. Among vertebrates, turtles are particularly vulnerable to habitat changes because of distinctive life history traits and the effect of environmental conditions on physiology and survival.
View Article and Find Full Text PDFHumans, as super predators, influence wildlife behavior through both direct predation and indirect fear effects, prompting spatial and temporal adaptations. In landscapes where human-wildlife coexistence is prevalent, understanding the spatiotemporal strategies employed by rare wildlife in response to anthropogenic disturbance is essential for effective biodiversity conservation. From July 2019 to September 2024, we deployed 62 camera traps in the Kazila Mountain region of Yajiang County, Sichuan Province, resulting in 6204 independent detections of rare wildlife and 722 recorded human activity events.
View Article and Find Full Text PDFPLoS One
September 2025
Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Essen, Germany.
Macrophytes in lowland rivers have traditionally been studied with a focus on surface water chemistry, particularly nutrients. However, unlike in lakes, the relationship between macrophytes and surface water nutrients in rivers is generally weaker, especially in highly alkaline lowland rivers, which are often found more downstreams. In these systems, elevated sediment nutrient levels may better explain macrophyte community compositions than surface water nutrients alone.
View Article and Find Full Text PDF