Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The identification of the potential molecule targets for subsyndromal symptomatic depression (SSD) is critical for improving the effective clinical treatment on the mental illness. In the current study, we mined the genome-wide expression profiling and investigated the novel biological pathways associated with SSD. Expression of differentially expressed genes DEGs) were analysed with microarrays of blood tissue cohort of eight SSD patients and eight healthy subjects. The gene co-expression is calculated by WGCNA, an R package software. The function of the genes was annotated by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We identified 11 modules from the 9,427 DEGs. Three co-expression modules (blue, cyan and red) showed striking correlation with the phenotypic trait between SSD and healthy controls. Gene ontology and KEGG pathway analysis demonstrated that the function of these three modules was enriched with the pathway of inflammatory response and type II diabetes mellitus. Finally, three hub genes, NT5DC1, SGSM2 and MYCBP, were identified from the blue module as significant genes. This first blood gene expression study in SSD observed distinct patterns between cases and controls which may provide novel insight into understanding the molecular mechanisms of SSD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15622975.2018.1548782 | DOI Listing |