98%
921
2 minutes
20
Recombination (crossover) drives the release of genetic diversity in plant breeding programs. However, in barley, recombination is skewed toward the telomeric ends of its seven chromosomes, restricting the re-assortment of about 30% of the genes located in the centromeric regions of its large 5.1 Gb genome. A better understanding of meiosis and recombination could provide ways of modulating crossover distribution and frequency in barley as well as in other grasses, including wheat. While most research on recombination has been carried out in the model plant Arabidopsis thaliana, recent studies in barley (Hordeum Vulgare) have provided new insights into the control of crossing over in large genome species. A major achievement in these studies has been the use of cytological procedures to follow meiotic events. This protocol provides detailed practical steps required to perform immunostaining of barley meiocytes (pollen mother cells) for confocal or structured illumination microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8944-7_11 | DOI Listing |
Braz J Otorhinolaryngol
September 2025
Zhejiang University, College of Medicine, Department of Otolaryngology, Hangzhou City, Zhejiang Province, China.
Objectives: Exosomes play a crucial role in intercellular communication and may contribute to the development of various diseases. Nevertheless, their role in Nasal Polyps (NPs) remains poorly understood. Herein, Nasal Polyp Fibroblasts (NPF) were used to release exosomes, and epithelial cells were cocultured with NPF-derived exosomes to analyze Epithelial-Mesenchymal Transition (EMT) in Chronic Rhinosinusitis (CRS).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of
In this study, we evaluated the antibacterial activities of plant essential oils (EOs) from the Lamiaceae family against Agrobacterium tumefaciens to find new eco-friendly antimicrobials. Thymus vulgaris L. (thyme white) EO demonstrated the most potent fumigant antibacterial activity among these.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
3D scaffold architecture is critical for directing human neural stem cell (hNSC) fate and spatial organization. In this study, two-photon lithography (TPL) is used to fabricate microcapillary scaffolds based on the Hilbert space-filling curve as biomimetic basement membrane structures for guiding hippocampal-derived hNSC differentiation. The scaffolds feature 80 µm lumens with porous ellipsoidal membranes suspended above the substrate to provide topographical cues and permit nutrient diffusion while maintaining mechanical stability.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands. Electronic address:
Plectin is a giant protein of the plakin family that crosslinks the cytoskeleton of mammalian cells. It is expressed in virtually all tissues and its dysfunction is associated with various diseases such as skin blistering. There is evidence that plectin regulates the mechanical integrity of the cytoskeleton in diverse cell and tissue types.
View Article and Find Full Text PDF