Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Avian influenza H5N1 subtype has caused a global public health concern due to its high pathogenicity in poultry and high case fatality rates in humans. The recently emerged H7N9 is a growing pandemic risk due to its sustained high rates of human infections, and recently acquired high pathogenicity in poultry. Here, we used Bayesian phylogeography on 265 H5N1 and 371 H7N9 haemagglutinin sequences isolated from humans, animals and the environment, to identify and compare migration patterns and factors predictive of H5N1 and H7N9 diffusion rates in China. H7N9 diffusion dynamics and predictor contributions differ from H5N1. Key determinants of spatial diffusion included: proximity between locations (for H5N1 and H7N9), and lower rural population densities (H5N1 only). For H7N9, additional predictors included low avian influenza vaccination rates, low percentage of nature reserves and high humidity levels. For both H5N1 and H7N9, we found viral migration rates from Guangdong to Guangxi and Guangdong to Hunan were highly supported transmission routes (Bayes Factor > 30). We show fundamental differences in wide-scale transmission dynamics between H5N1 and H7N9. Importantly, this indicates that avian influenza initiatives designed to control H5N1 may not be sufficient for controlling the H7N9 epidemic. We suggest control and prevention activities to specifically target poultry transportation networks between Central, Pan-Pearl River Delta and South-West regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246557PMC
http://dx.doi.org/10.1038/s41426-018-0185-zDOI Listing

Publication Analysis

Top Keywords

h5n1 h7n9
24
avian influenza
12
h5n1
10
h7n9
10
high pathogenicity
8
pathogenicity poultry
8
h7n9 diffusion
8
high
5
rates
5
characterising routes
4

Similar Publications

Analyzing Reddit Social Media Content in the United States Related to H5N1: Sentiment and Topic Modeling Study.

J Med Internet Res

September 2025

Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.

View Article and Find Full Text PDF

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Understanding the transmission routes of high-pathogenicity avian influenza (HPAI) is crucial for developing effective control measures to prevent its spread. In this context, windborne transmission, the idea that the virus could travel through the air over considerable distances, is a contentious concept, and documented cases have been rare. Here, though, we provide genetic evidence supporting the feasibility of windborne transmission.

View Article and Find Full Text PDF

Since its emergence in 1996, highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 lineage have diversified into multiple clades, culminating in the 2020-2021 global panzootic caused by H5N1 viruses of the clade 2.3.4.

View Article and Find Full Text PDF

Investigating factors driving shifts in subtype dominance within H5Nx clade 2.3.4.4b high pathogenicity avian influenza viruses.

J Gen Virol

September 2025

Influenza and Avian Virology Workgroup, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK.

H5Nx clade 2.3.4.

View Article and Find Full Text PDF