Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Forty-seven sediment cores were collected as part of a spatial survey of Long Lake, Yellowknife, NWT, Canada to elucidate the physical and geochemical controls on the distribution of arsenic (As) in sediments impacted by the aerial deposition of arsenic trioxide (AsO) from ore roasting at legacy gold mines. High-resolution profiles of dissolved As in bottom water and porewater were also collected to determine As remobilization and diffusion rates across the sediment-water interface. Arsenic concentrations in Long Lake sediments ranged from 2.2 to 3420 mg kg (dry weight). Two distinct types of sediment As concentration profiles were identified and are interpreted to represent erosional and depositional areas. Water depth is the best predictor of As concentration in the top 5 cm of sediments due to the inferred focusing of fine-grained AsO into deeper water. At greater sediment depths, iron (Fe) concentration, as a likely indicator of As, Fe, and sulphur (S) co-diagenesis, was the best predictor of As concentration. The sediments are a source of dissolved As to surface waters through diffusion-controlled release to bottom water. Arsenic concentrations, solid-phase speciation, and diffusive efflux varied laterally across the lake bottom and with sediment depth due to the interplay between sediment-focusing processes and redox reactions, which has implications for human health and ecological risk assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.11.065DOI Listing

Publication Analysis

Top Keywords

arsenic concentrations
12
concentrations solid-phase
8
solid-phase speciation
8
long lake
8
bottom water
8
best predictor
8
predictor concentration
8
sediment
5
arsenic
5
controls governing
4

Similar Publications

Key factors affecting heavy metal contamination of mangrove sediments in the Zhangjiang Estuary: Implications for environmental management.

Mar Pollut Bull

September 2025

School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen, 361024, China. Electronic address:

With the rapid economic development of coastal cities, the discharge of significant amounts of heavy metal pollutants has posed a severe threat to mangrove forests. However, the potential sources of these metals and the health risks they pose remain poorly understood. This study analyzed 14 heavy metals in mangrove and river sediments of Zhangjiang Estuary, southeastern China.

View Article and Find Full Text PDF

Forest soil properties regulate arsenic mobility and life stage-specific ecotoxicity in Collembola: Implications for early-stage contamination risk.

J Hazard Mater

September 2025

Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea. Electronic address:

Arsenic (As) contamination from abandoned gold mines threatens adjacent ecosystems through leaching and erosion. This study investigated how soil physicochemical properties regulate As binding forms upon initial contamination and associated ecotoxicological effects on soil invertebrates. Forest soils (0-10 cm depth) were collected from four mountainous sites across Korea with varying physicochemical properties.

View Article and Find Full Text PDF

Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.

View Article and Find Full Text PDF

This study aimed to assess the environmental and health risks of heavy metal contamination from e-waste recycling in Lahore, Pakistan. Surface soil (0-15 cm) samples were collected from recycling facilities, and heavy metal concentrations were measured using atomic absorption spectrophotometry. The mean concentrations (mg/kg) of Cadmium (Cd) (5.

View Article and Find Full Text PDF

Highly efficient stabilization of arsenic in the contaminated sediments of Jiehe River by schwertmannite to inhibit arsenic release into overlying water.

J Hazard Mater

September 2025

Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Arsenic (As) represents the most typical associated element in gold mines, with As pollution frequently observed in regions of intensive gold mining activities, especially in Zhaoyuan City, renowned as the "Gold Capital" of China. In this study, schwertmannite (Sch), an iron oxyhydroxysulfate mineral with unique channel structure renowned for its As adsorption and stabilization capabilities in aqueous and soil systems, was synthesized and applied to evaluate its efficacy in stabilizing As for gold mining-impacted sediments. Besides, the functional mechanisms of Sch in mediating the redistribution and persistent immobilization of As in the sediments of Jiehe River in Zhaoyuan city were also explored.

View Article and Find Full Text PDF