Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accumulation of fibrillar amyloid β protein in blood vessels of the brain, a condition known as cerebral amyloid angiopathy (CAA), is a common pathology of elderly individuals, a prominent comorbidity of Alzheimer disease, and a driver of vascular cognitive impairment and dementia. Although several transgenic mouse strains have been generated that develop varying levels of CAA, consistent models of associated cerebral microhemorrhage and vasculopathy observed clinically have been lacking. Reliable preclinical animal models of CAA and microhemorrhage are needed to investigate the molecular pathogenesis of this condition. Herein, we describe the generation and characterization of a novel transgenic rat (rTg-DI) that produces low levels of human familial CAA Dutch/Iowa E22Q/D23N mutant amyloid β protein in brain and faithfully recapitulates many of the pathologic aspects of human small-vessel CAA. rTg-DI rats exhibit early-onset and progressive accumulation of cerebral microvascular fibrillar amyloid accompanied by early-onset and sustained behavioral deficits. Comparable to CAA in humans, the cerebral microvascular amyloid in rTg-DI rats causes capillary structural alterations, promotes prominent perivascular neuroinflammation, and produces consistent, robust microhemorrhages and small-vessel occlusions that are readily detected by magnetic resonance imaging. The rTg-DI rats provide a new model to investigate the pathogenesis of small-vessel CAA and microhemorrhages, to develop effective biomarkers for this condition and to test therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334267PMC
http://dx.doi.org/10.1016/j.ajpath.2018.07.030DOI Listing

Publication Analysis

Top Keywords

cerebral microvascular
12
rtg-di rats
12
novel transgenic
8
transgenic rat
8
microvascular amyloid
8
fibrillar amyloid
8
amyloid protein
8
small-vessel caa
8
caa
7
amyloid
6

Similar Publications

Cerebrovascular protective functions of amyloid precursor protein: Progress and therapeutic prospects.

Pharmacol Ther

September 2025

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA; Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.

Under physiological conditions, amyloid precursor protein (APP) is critically important for normal brain development, neurogenesis, neuronal survival, and synaptic signaling. Dyshomeostasis of APP increases deposition and accumulation of amyloid β (Aβ) in the brain parenchyma and cerebral blood vessels thereby leading to development of Alzheimer's disease and cerebral amyloid angiopathy. In this review, we critically examine existing literature supporting the concept that endothelial APP performs important vascular protective functions in the brain.

View Article and Find Full Text PDF

YXQN Ameliorates Vascular Dementia in 2-VO Rats via Inhibition of Ferroptosis.

J Ethnopharmacol

September 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China; The Key Discipline for Integration of Chinese and Western B

Ethnopharmacological Relevance: YangXue QingNao Wan (YXQN) is a compound Chinese medicine comprising of 11 traditional Chinese medicinal herbs, including Angelica sinensis, Ligusticum chuanxiong, and Paeonia lactiflora, etc. Previous studies in our laboratory have demonstrated that YXQN improved cerebral microcirculation in hypertensive rats. However, its efficacy and underlying mechanisms in treating vascular dementia (VaD) remain unclear.

View Article and Find Full Text PDF

Background: Current neurovascular unit isolation requires processing brain microvascular endothelial cells (BMECs) and neurons from separate animals, preventing concurrent analysis of neurovascular crosstalk within identical genetic/physiological contexts.

New Methods: We developed an enzymatic digestion/bovine serum albumin density gradient technique that enables the simultaneous isolation of neural tissue and microvascular segments from individual mice. The neural tissue was filtered and centrifuged for primary cortical neuron culture on poly-L-lysine-coated plates.

View Article and Find Full Text PDF

Transcranial ultrasound localization microscopy of the rat brain with ray theory-based aberration correction.

Ultrasonics

August 2025

College of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China. Electronic address:

Transcranial ultrasound localization microscopy (t-ULM) is faced with challenges posed by the skull, including acoustic attenuation and phase aberrations. There is a significant request for an efficient aberration correction method achieving a great balance between computational complexity and accuracy. In this study, the ray theory is first applied to in-vivo transcranial imaging to calculate the traveltime table in the inhomogeneous medium model of the imaging region.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF