98%
921
2 minutes
20
Fas (CD95/APO-1) and its ligand (FasL/CD95L) promote the resolution of type 2 lung inflammation and eosinophilia. We previously found that Fas-deficiency on T cells, but not eosinophils, delayed resolution of inflammation. However, Fas can signal both cell death and have a positive signaling function that can actually activate cells. In this study, we investigated whether Fas-induced death or Fas-activated signaling pathways promote resolution of allergic lung inflammation. By increasing T cell survival through two Fas-independent pathways, using Bim-deficient T cells or Bcl-x overexpressing T cells, no differences in resolution of Th2-mediated inflammation was observed. Furthermore, Th2 cells were inherently resistant to Fas-mediated apoptosis and preferentially signaled through non-apoptotic pathways following FasL treatment. Utilizing Fas-mutant mice deficient in apoptotic but sufficient for non-apoptotic Fas signaling pathways, we demonstrate that non-apoptotic Fas signaling in T cells drives resolution of Th2-mediated airway inflammation. Our findings reveal a previously unknown role for non-apoptotic Fas signaling on Th2 cells in the induction of resolution of type 2 inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221963 | PMC |
http://dx.doi.org/10.3389/fimmu.2018.02521 | DOI Listing |
Front Cell Infect Microbiol
May 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
The FAS cell surface death receptor, a member of the tumor necrosis factor receptor family, activates both apoptotic and non-apoptotic signaling upon interaction with its ligand FASL. It is critical in cell migration, invasion, immune responses, and carcinogenesis. Pathogen infection can influence host cells' behavior by modulating the FAS/FASL pathway, thereby influencing disease progression.
View Article and Find Full Text PDFDrug Discov Today
February 2025
Institute of Immunology, Kiel University (CAU), Kiel, Germany.
Death ligands (DLs), particularly tumor necrosis factor alpha (TNF-α), FAS ligand (FASL), and TNF-related apoptosis-inducing ligand (TRAIL), collectively termed TFT, are pivotal members of the TNF superfamily. While traditionally linked to apoptosis, TFT proteins have emerged as key regulators of various non-apoptotic processes. This review summarizes the non-apoptotic functions of TFT in cancer and explores the intricate crosstalk signaling pathways and their impact on nuclear factor kappa B (NF-κB) signaling, inflammation, and pro-tumorigenic function.
View Article and Find Full Text PDFCells
November 2024
Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals.
View Article and Find Full Text PDFCells Dev
September 2024
Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic; University of Veterinary Sciences, Brno, Czech Republic. Electronic address:
Fas ligand (FasL, CD178) belongs to classical apoptotic molecules, however, recent evidence expands the spectrum of FasL functions into non-apoptotic processes which also applies for the bone. Tgfb subfamily members (Tgfb1, Tgfb2, Tgfb3) represent major components in osteogenic pathways and extracellular matrix. Their possible association with FasL has not yet been investigated but can be postulated.
View Article and Find Full Text PDFCurr Res Toxicol
April 2024
School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells .
View Article and Find Full Text PDF