Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most toxic compounds including cancer drugs target mitochondria culminating in its permeabilization. Cancer drug-screening and toxicological testing of compounds require cost-effective and sensitive high-throughput methods to detect mitochondrial damage. Real-time methods for detection of mitochondrial damage are less toxic, allow kinetic measurements with good spatial resolution and are preferred over end-stage assays. Cancer cell lines stably expressing genetically encoded mitochondrial-targeted redox-GFP2 (mt-roGFP) were developed and validated for its suitability as a mitochondrial damage sensor. Diverse imaging platforms and flow-cytometry were utilized for ratiometric analysis of redox changes with known toxic and cancer drugs. Key events of cell death and mitochondrial damage were studied at single-cell level coupled with mt-roGFP. Cells stably expressing mt-roGFP and H2B-mCherry were developed for high-throughput screening (HTS) application. Most cancer drugs while inducing mitochondrial permeabilization trigger mitochondrial-oxidation that can be detected at single-cell level with mt-roGFP. The image-based assay using mt-roGFP outperformed other quantitative methods of apoptosis in ease of screening. Incorporation of H2B-mCherry ensures accurate and complete automated segmentation with excellent Z value. The results substantiate that most cancer drugs and known plant-derived antioxidants trigger cell-death through mitochondrial redox alterations with pronounced ratio change in the mt-roGFP probe. Real-time analysis of mitochondrial oxidation and mitochondrial permeabilization reveal a biphasic ratio change in dying cells, with an initial redox surge before mitochondrial permeabilization followed by a drastic increase in ratio after complete mitochondrial permeabilization. Overall, the results prove that mitochondrial oxidation is a reliable indicator of mitochondrial damage, which can be readily determined in live cells using mt-roGFP employing diverse imaging techniques. The assay described is highly sensitive, easy to adapt to HTS platforms and is a valuable resource for identifying cytotoxic agents that target mitochondria and also for dissecting cell signaling events relevant to redox biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222140PMC
http://dx.doi.org/10.1016/j.redox.2018.10.013DOI Listing

Publication Analysis

Top Keywords

mitochondrial damage
20
cancer drugs
16
mitochondrial permeabilization
16
mitochondrial
13
target mitochondria
8
stably expressing
8
diverse imaging
8
single-cell level
8
ratio change
8
mitochondrial oxidation
8

Similar Publications

Ethnopharmacological Relevance: Heart failure (HF), the terminal stage of various cardiovascular diseases, represents a significant threat to global health. Fuxin Decoction (FXD), a classical Traditional Chinese Medicine (TCM) formula, has demonstrated therapeutic efficacy in HF treatment. However, its bioactive components and precise mechanisms remain to be elucidated.

View Article and Find Full Text PDF

Senolytic therapy increases replicative capacity by eliminating senescent endothelial cells.

Exp Gerontol

September 2025

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Salk Institute for Biological Studies, La Jolla, CA, 92037, USA; Department of Molecular Biology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake Ci

Aging is the greatest risk factor for cardiovascular diseases (CVD) and is characterized by inflammation, oxidative stress, and cellular senescence. Cellular senescence is a state of persistent cell cycle arrest triggered by stressors such as DNA damage and telomere attrition. Senescent endothelial cells (ECs) can impair vascular function and promote inflammation, thereby contributing to CVD progression.

View Article and Find Full Text PDF

Defective mitochondrial quality control in the ageing of skeletal muscle.

Mech Ageing Dev

September 2025

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.

Age-related skeletal muscle decline is a major contributor to frailty, functional impairment, and loss of independence in advanced age. This process is characterized by selective atrophy of type II fibers, impaired excitation-contraction coupling, and reduced regenerative capacity. Emerging evidence implicates mitochondrial dysfunction as a central mechanism in the disruption of muscle homeostasis with age.

View Article and Find Full Text PDF

Imbalanced mitochondrial homeostasis in ocular diseases: unique pathogenesis and targeted therapy.

Exp Eye Res

September 2025

School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan

Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.

View Article and Find Full Text PDF

Tubulin hyperacetylation drives HMGB1 nuclear exit via the ROS-PARP1 axis leading to rotenone-induced G2/M Arrest.

J Biol Chem

September 2025

Institute of Health Sciences, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, Kolkata-700156, West Bengal, India, Tel: +91 8017086495. Electronic address:

Rotenone, a lipophilic pesticide, is strongly linked to dopaminergic neuronal loss primarily through mitochondrial complex I inhibition. Beyond its well-characterized neurotoxic effects, rotenone also triggers G2/M arrest in cells, but the molecular mechanisms linking this cell cycle perturbation to neurodegeneration remain unclear. Here, we identify HMGB1 as a key player in this process.

View Article and Find Full Text PDF