Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we aimed to develop a strategy for evaluating the consistency of pharmaceutically important crystallization processes in real time, focusing on two typical cases of polymorphism. Theoretical analysis using a combination of C solid-state nuclear magnetic resonance spectroscopy with other polymorphism analysis techniques identified a number of marker signals, the changes of which revealed the presence of two or more structural orientations (lattices and/or molecular conformations) in both cefazolin sodium pentahydrate (α-CEZ-Na) and cephathiamidine (CETD). The proportions of these forms were shown to be batch-dependent and were defined as critical quality attributes (CQAs) to evaluate process consistency. Subsequently, real-time analysis by chemometrics-assisted near-infrared spectroscopy (NIR) was used to obtain useful information corresponding to CQAs. The pretreated spectra of representative samples were transformed by first derivative and vector normalization methods and used to calculate standard deviations at each wavelength and thus detect significant differences. As a result, vibrational responses of HO, CH, and CH moieties (at 5,280, 4,431, and 4,339 cm, respectively) were shown to be sensitive to the CQAs of α-CEZ-Na, which allowed us to establish a highly accurate discrimination model. Moreover, signals of HO, CONH, and COOH moieties (at 5,211, 5,284, and 5,369 cm, respectively) played the same role in the case of CETD, as confirmed by theoretical results. Thus, we established a technique for the rapid evaluation of crystallization process consistency and deepened our understanding of crystallization behavior by using NIR in combination with polymorphism analysis techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204365PMC
http://dx.doi.org/10.3389/fchem.2018.00506DOI Listing

Publication Analysis

Top Keywords

process consistency
12
evaluation crystallization
8
crystallization process
8
near-infrared spectroscopy
8
polymorphism analysis
8
analysis techniques
8
characterization solid-state
4
solid-state drug
4
drug polymorphs
4
polymorphs real-time
4

Similar Publications

Right hemisphere language network plasticity in aphasia.

Brain

September 2025

Center for Brain Plasticity and Recovery, Center for Aphasia Research and Rehabilitation, Departments of Neurology and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, 20057  USA.

The role of the right hemisphere in aphasia recovery has been controversial since the 19th century. Imaging studies have sometimes found increased activation in right hemisphere regions homotopic to canonical left hemisphere language regions, but these results have been questioned due to small sample sizes, unreliable imaging tasks, and task performance confounds that affect right hemisphere activation levels even in neurologically healthy adults. Several principles of right hemisphere language recruitment in aphasia have been proposed based on these studies: that the right hemisphere is recruited primarily by individuals with severe left hemisphere damage, that transcallosal disinhibition results in recruitment of right hemisphere regions homotopic to the lesion, and that increased right hemisphere activation diminishes to baseline levels over time.

View Article and Find Full Text PDF

Objectives: Alexithymia is characterized by difficulties in identifying and describing one's own emotions. Alexithymia has previously been associated with deficits in the processing of emotional information at both behavioral and neurobiological levels, and some studies have shown elevated levels of alexithymic traits in adults with hearing loss. This explorative study investigated alexithymia in young and adolescent school-age children with hearing aids in relation to (1) a sample of age-matched children with normal hearing, (2) age, (3) hearing thresholds, and (4) vocal emotion recognition.

View Article and Find Full Text PDF

Adversarial training for dynamics matching in coarse-grained models.

J Chem Phys

September 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.

Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.

View Article and Find Full Text PDF

Removal and inactivation of human coronavirus surrogates from hard and soft surfaces using disinfectant wipes.

Appl Environ Microbiol

September 2025

Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.

Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.

View Article and Find Full Text PDF

Diverse marine species convert methylphosphonate to methane.

Mar Life Sci Technol

August 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China.

Unlabelled: Microbial degradation of methylphosphonate (MPn) is an important pathway contributing to the 'methane paradox' in the oxic ocean. spp. are suggested to participate in this process.

View Article and Find Full Text PDF