98%
921
2 minutes
20
Herein, we aimed to develop a strategy for evaluating the consistency of pharmaceutically important crystallization processes in real time, focusing on two typical cases of polymorphism. Theoretical analysis using a combination of C solid-state nuclear magnetic resonance spectroscopy with other polymorphism analysis techniques identified a number of marker signals, the changes of which revealed the presence of two or more structural orientations (lattices and/or molecular conformations) in both cefazolin sodium pentahydrate (α-CEZ-Na) and cephathiamidine (CETD). The proportions of these forms were shown to be batch-dependent and were defined as critical quality attributes (CQAs) to evaluate process consistency. Subsequently, real-time analysis by chemometrics-assisted near-infrared spectroscopy (NIR) was used to obtain useful information corresponding to CQAs. The pretreated spectra of representative samples were transformed by first derivative and vector normalization methods and used to calculate standard deviations at each wavelength and thus detect significant differences. As a result, vibrational responses of HO, CH, and CH moieties (at 5,280, 4,431, and 4,339 cm, respectively) were shown to be sensitive to the CQAs of α-CEZ-Na, which allowed us to establish a highly accurate discrimination model. Moreover, signals of HO, CONH, and COOH moieties (at 5,211, 5,284, and 5,369 cm, respectively) played the same role in the case of CETD, as confirmed by theoretical results. Thus, we established a technique for the rapid evaluation of crystallization process consistency and deepened our understanding of crystallization behavior by using NIR in combination with polymorphism analysis techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204365 | PMC |
http://dx.doi.org/10.3389/fchem.2018.00506 | DOI Listing |
Brain
September 2025
Center for Brain Plasticity and Recovery, Center for Aphasia Research and Rehabilitation, Departments of Neurology and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, 20057 USA.
The role of the right hemisphere in aphasia recovery has been controversial since the 19th century. Imaging studies have sometimes found increased activation in right hemisphere regions homotopic to canonical left hemisphere language regions, but these results have been questioned due to small sample sizes, unreliable imaging tasks, and task performance confounds that affect right hemisphere activation levels even in neurologically healthy adults. Several principles of right hemisphere language recruitment in aphasia have been proposed based on these studies: that the right hemisphere is recruited primarily by individuals with severe left hemisphere damage, that transcallosal disinhibition results in recruitment of right hemisphere regions homotopic to the lesion, and that increased right hemisphere activation diminishes to baseline levels over time.
View Article and Find Full Text PDFEar Hear
September 2025
Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
Objectives: Alexithymia is characterized by difficulties in identifying and describing one's own emotions. Alexithymia has previously been associated with deficits in the processing of emotional information at both behavioral and neurobiological levels, and some studies have shown elevated levels of alexithymic traits in adults with hearing loss. This explorative study investigated alexithymia in young and adolescent school-age children with hearing aids in relation to (1) a sample of age-matched children with normal hearing, (2) age, (3) hearing thresholds, and (4) vocal emotion recognition.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.
Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.
Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microbial degradation of methylphosphonate (MPn) is an important pathway contributing to the 'methane paradox' in the oxic ocean. spp. are suggested to participate in this process.
View Article and Find Full Text PDF