98%
921
2 minutes
20
Broadly neutralizing antibodies (bnAbs) are promising agents for prevention and/or treatment of HIV-1 infection. However, the diversity among HIV-1 envelope (Env) glycoproteins impacts bnAb potency and breadth. Neutralization data on the CRF02_AG clade are scarce although it is highly prevalent in West Africa and Europe. We assessed the sensitivity to bnAbs of a panel of 33 early transmitted CRF02_AG viruses over a 15-year period of the French epidemic (1997 to 2012). Env pseudotyped CRF02_AG viruses were best neutralized by the CD4 binding site (CD4bs)-directed bnAbs (VRC01, 3BNC117, NIH45-46, and N6) and the gp41 membrane-proximal external region (MPER)-directed bnAb 10E8 in terms of both potency and breadth. We observed a higher resistance to bnAbs targeting the V1V2-glycan region (PG9 and PGT145) and the V3-glycan region (PGT121 and 10-1074). Combinations were required to achieve full coverage across this subtype. We observed increased resistance to bnAbs targeting the CD4bs linked to the diversification of CRF02_AG Env over the course of the epidemic, a phenomenon which was previously described for subtypes B and C. These data on the sensitivity to bnAbs of CRF02_AG viruses, including only recently transmitted viruses, will inform future passive immunization studies. Considering the drift of the HIV-1 species toward higher resistance to neutralizing antibodies, it appears necessary to keep updating existing panels for evaluation of future vaccine and passive immunization studies. Major progress occurred during the last decade leading to the isolation of human monoclonal antibodies, termed broadly neutralizing antibodies (bnAbs) due to their capacity to neutralize various strains of HIV-1. Several clinical trials are under way in order to evaluate their efficacy in preventive or therapeutic strategies. However, no single bnAb is active against 100% of strains. It is important to gather data on the sensitivity to neutralizing antibodies of all genotypes, especially those more widespread in regions where the prevalence of HIV-1 infection is high. Here, we assembled a large panel of clade CRF02_AG viruses, the most frequent genotype circulating in West Africa and the second most frequent found in several European countries. We evaluated their sensitivities to bnAbs, including those most advanced in clinical trials, and looked for the best combinations. In addition, we observed a trend toward increased resistance to bnAbs over the course of the epidemic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321924 | PMC |
http://dx.doi.org/10.1128/JVI.01492-18 | DOI Listing |
Influenza Other Respir Viruses
September 2025
Department of Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.
J Biomed Sci
September 2025
Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute of Physical Science and Information, Anhui University, 230039, Hefei, Anhui, China.
The global outbreak of the mpox in humans, caused by the mpox virus (MPXV), underscores the urgent need for safe and effective therapeutics. In this study, we characterized the dominant MPXV immunogens, M1R and B6R, by sequencing monoclonal antibodies (MAbs) from the immunized mice and analyzing their epitopes and functions through in vitro and in vivo assessments of binding and antiviral activities. Several broadly effective anti-M1R and anti-B6R neutralizing MAbs were identified and they exhibited enhanced antiviral effects against MPXV or vaccinia virus (VACV) when used in antibody cocktail and bispecific antibody designs.
View Article and Find Full Text PDFNat Immunol
September 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
Crohn's disease pathology is modeled in TNF mice that overproduce tumor necrosis factor (TNF) to drive disease through TNF receptors. An alternative ligand for TNF receptors, soluble LTα, is produced by B cells, but has received scarce attention because LTα also partners with LTβ to generate membrane-tethered LTαβ that promotes tertiary lymphoid tissue-another feature of Crohn's disease. We hypothesized that B cell-derived LTαβ would critically affect ileitis in TNF mice.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.
View Article and Find Full Text PDF