A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption.

Sensors (Basel)

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The past decade has seen a substantial increase in the use of small unmanned aerial vehicles (UAVs) in both civil and military applications. This article addresses an important aspect of refueling in the context of routing multiple small UAVs to complete a surveillance or data collection mission. Specifically, this article formulates a multiple-UAV routing problem with the refueling constraint of minimizing the overall fuel consumption for all the vehicles as a two-stage stochastic optimization problem with uncertainty associated with the fuel consumption of each vehicle. The two-stage model allows for the application of sample average approximation (SAA). Although the SAA solution asymptotically converges to the optimal solution for the two-stage model, the SAA run time can be prohibitive for medium- and large-scale test instances. Hence, we develop a tabu search-based heuristic that exploits the model structure while considering the uncertainty in fuel consumption. Extensive computational experiments corroborate the benefits of the two-stage model compared to a deterministic model and the effectiveness of the heuristic for obtaining high-quality solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263886PMC
http://dx.doi.org/10.3390/s18113756DOI Listing

Publication Analysis

Top Keywords

fuel consumption
16
two-stage model
12
routing multiple
8
unmanned aerial
8
aerial vehicles
8
two-stage
5
model
5
two-stage approach
4
approach routing
4
multiple unmanned
4

Similar Publications

Biofouling poses significant ecological and operational challenges in marine environments, particularly across Indonesia's diverse tropical waters. It increases hydrodynamic drag on vessels, leading to greater fuel consumption and elevated operational costs. This review synthesizes both recent and historical studies to examine the taxonomic and functional diversity of marine biofouling organisms in Indonesian waters.

View Article and Find Full Text PDF

Dietary intake has an important influence on rates of fuel use during exercise, but the extent to which short-term diet changes affect peak fat oxidation (PFO) and the intensity at which this occurs (Fat) is unknown. This study examined the impact of diet-induced changes in substrate availability on PFO and Fat and the expression of key lipid-regulatory genes and proteins in skeletal muscle. Forty moderately to well-trained males (27 ± 5 years, V̇O 56.

View Article and Find Full Text PDF

Being naturally hyperglycemic and insulin insensitive, birds maintain plasma glucose levels twice as high as mammals of similar size. Recent evidence suggests that perturbation of myo-inositol (MI) plays a role in mammalian hyperglycemic regulation. Using an integrative approach, we identify a fundamental role of MI in avian metabolism.

View Article and Find Full Text PDF

Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.

View Article and Find Full Text PDF

Advanced Materials for CO Capture: A Critical Review of Emerging Adsorbents and Technologies.

Chem Rec

September 2025

Chemistry Department, and Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Carbon dioxide (CO) capture technology (CCT) is a critical step toward reducing the environmental impact of fossil fuel combustion, which contributes significantly to global climate change. This review examines the current state of CCT, focusing on its efficiency, limitations, and scalability. Advanced technologies such as postcombustion, precombustion, oxyfuel combustion, and direct air capture are examined, with an emphasis on their suitability for industrial-scale applications.

View Article and Find Full Text PDF